In the living cells, proteins bind small molecules (or “ligands”) through a “conformational selection” mechanism, where a subset of protein structures are capable of binding the small molecules well while most other protein structures are not capable of such binding. The present work uses machine learning approaches to identify, in a very large amount of protein:ligand complexes, what protein properties are associated with their capacity to bind small molecules. In order to do so, we calculate 40 physicochemical properties on about 1.5 millions of protein conformations: ligand and protein conformations. This work describes a machine learning approach to identify the unique physico-chemical descriptors of a protein that maximize the prediction rate of potential protein molecular conformations for the test case proteins ADORA2A (Adenosine A2a Receptor), ADRB2 (Adrenoceptor Beta 2) and OPRK1 (Opioid Receptor Kappa 1). We find adequate machine learning techniques can increase by an order of magnitude the identification of “binding protein conformations” in an otherwise very large ensemble of protein conformations, compared to random selection of protein conformations. This opens the door to the systematic identification of such “binding conformations” for proteins and provides a big data approach to the conformational selection mechanism.
This research introduces new machine learning and deep learning approaches, collectively referred to as Big Data analytics techniques that are unique to address the protein conformational selection mechanism for protein:ligands complexes. The novel Big Data analytics techniques presented in this work enables efficient data processing of a large number of protein:ligand complexes, and provides better identification of specific protein properties that are responsible for a high probability of correct prediction of protein:ligand binding. The GPCR proteins ADORA2A (Adenosine A2a Receptor), ADRB2 (Adrenoceptor Beta 2), OPRD1 (Opioid receptor Delta 1) and OPRK1 (Opioid Receptor Kappa 1) are examined in this study using Big Data analytics techniques, which can efficiently process a huge ensemble of protein conformations, and significantly enhance the prediction of binding protein conformation (i.e., the protein conformations that will be selected by the ligands for binding) about 10–38 times better than its random selection counterpart for protein conformation selection. In addition to providing a Big Data approach to the conformational selection mechanism, this also opens the door to the systematic identification of such “binding conformations” for proteins. The physico-chemical features that are useful in predicting the “binding conformations” are largely, but not entirely, shared among the test proteins, indicating that the biophysical properties that drive the conformation selection mechanism may, to an extent, be protein-specific for the protein properties used in this work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.