Endophytes are microbes which reside inside the plant tissues asymptomatically or causing pathogenicity to the host plant for a brief period. Owing to their presence in a specialized niche, endophytes are capable of synthesizing diverse types of bioactive molecules. Continuous development of resistance mechanism by pathogens to the currently available health treatments and pharmaceuticals has led researchers to explore new therapeutic agents. Quorum sensing has a role in the development of microbial pathogenic traits including biofilm formation. Utilization of quorum sensing (QS) inhibitors in antivirulence approach against pathogenesis is one of the innovative strategies. Endophytic microbes provide a plethora of such required bioactive molecules. This review summarizes the bioprospecting of endophytic microbes for production of novel QS inhibitors. At the outset, an overview is presented about the QS and QS inhibition followed by a summary on the endophytes as a treasure trove of bioactive metabolites, particularly the QS inhibitors. Next, we have outlined screening, purification, production, and application of QS inhibitors starting from the isolation of endophytic microbes. There is huge prospect for endophytes in the domain of human healthcare and food industry, provided that we develop a comprehensive understanding of the biology of endophyte and its ecosystem.
Microbes or parasites spread vector-borne diseases by mosquitoes without being affected themselves. Insecticides used in vector control produce a substantial problem for human health. This study synthesized zinc oxide nanoparticles (ZnO NPs) using Lawsonia inermis L. and were characterized by UV–vis, FT-IR, SEM with EDX, and XRD analysis. Green synthesized ZnO NPs were highly toxic against Anopheles stephensi, whose lethal concentrations values ranged from 5.494 ppm (I instar), 6.801 ppm (II instar), 9.336 ppm (III instar), 10.736 ppm (IV instar), and 12.710 ppm (pupae) in contrast to L. inermis treatment. The predation efficiency of the teleost fish Gambusia affinis and the copepod Mesocyclops aspericornis against A. stephensi was not affected by exposure at sublethal doses of ZnO NPs. The predatory potency for G. affinis was 45 (I) and 25.83% (IV), copepod M. aspericornis was 40.66 (I) and 10.8% (IV) while in an ZnO NPs contaminated environment, the predation by the fish G. affinis was boosted to 71.33 and 34.25%, and predation of the copepod M. aspericornis was 60.35 and 16.75%, respectively. ZnO NPs inhibited the growth of several microbial pathogens including the bacteria (Escherichia coli and Bacillus subtilis) and the fungi (Alternaria alternate and Aspergillus flavus), respectively. ZnO NPs decreased the cell viability of Hep-G2 with IC50 value of 21.63 µg/mL (R2 = 0.942; P < 0.001) while the concentration increased from 1.88 to 30 µg/mL. These outcomes support the use of L. inermis mediated ZnO NPs for mosquito control and drug development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.