Proxy reconstructions from the mid-Holocene (MH: 6,000 years ago) indicate an intensification of the West African Monsoon and a weakening of the South American Monsoon, primarily resulting from orbitally-driven insolation changes. However, model studies that account for MH orbital configurations and greenhouse gas concentrations can only partially reproduce these changes. Most model studies do not account for the remarkable vegetation changes that occurred during the MH, in particular over the Sahara, precluding realistic simulations of the period. Here, we study precipitation changes over northern Africa and South America using four fully coupled global climate models by accounting for the Saharan greening. Incorporating the Green Sahara amplifies orbitally-driven changes over both regions, and leads to an improvement in proxy-model agreement. Our work highlights the local and remote impacts of vegetation and the importance of considering vegetation changes in the Sahara when studying and modelling global climate.
<p>Paleoclimatic reconstructions have suggested a reduction inthe variability of the El Ni&#241;o Southern Oscillation (ENSO) during the mid-Holocene (MH). Model simulations have largely failed to capture thisreduction, potentially due to the inadequate representation of the Green Sahara.The presence of a vegetated Sahara has been shown to have significant impacts on both regional and remote climate but remains inadequately addressed in Paleoclimate Modelling Intercomparison Project / Coupled Model Intercomparison Project (PMIP/CMIP) boundary conditions. Specifically, the incorporation of a Green Sahara has been shown to impact ENSO variability through perturbations to the Walker Circulation. In this study, we evaluate the MH (6,000 years BP) ENSO signatures of simulations from four models, namely &#8212;EC-Earth 3.1, iCESM 1.2, University of Toronto version of CCSM4 and GISS Model E2.1-G. Two simulations are considered for each model&#8212;a standard PMIP simulation (MH<sub>PMIP</sub>) with the mid-Holocene orbital parameters and greenhouse gas concentrations with vegetation prescribed to preindustrial conditions, as well as a Green Sahara simulation (MH<sub>GS</sub>) which additionally incorporates factors such as enhanced vegetation, reduced dust, presence of lakes, and land and soil feedbacks. All models show a reduction in ENSO variability due to the incorporation of Green Sahara conditions. This variability is interpreted in the context of perturbations to the Walker Circulation, triggered by the strengthening of the West African Monsoon.</p>
Proxy reconstructions from the mid‐Holocene (MH: 6,000 years ago) indicate an intensification of the West African Monsoon and a weakening of the South American Monsoon, primarily resulting from orbitally‐driven insolation changes. However, model studies that account for MH orbital configurations and greenhouse gas concentrations can only partially reproduce these changes. Most model studies do not account for the remarkable vegetation changes that occurred during the MH, in particular over the Sahara, precluding realistic simulations of the period. Here, we study precipitation changes over northern Africa and South America using four fully coupled global climate models by accounting for the Saharan greening. Incorporating the Green Sahara amplifies orbitally‐driven changes over both regions, and leads to an improvement in proxy‐model agreement. Our work highlights the local and remote impacts of vegetation and the importance of considering vegetation changes in the Sahara when studying and modeling global climate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.