Predictive VM (Virtual Machine) auto-scaling is a promising technique to optimize cloud applications’ operating costs and performance. Understanding the job arrival rate is crucial for accurately predicting future changes in cloud workloads and proactively provisioning and de-provisioning VMs for hosting the applications. However, developing a model that accurately predicts cloud workload changes is extremely challenging due to the dynamic nature of cloud workloads. Long- Short-Term-Memory (LSTM) models have been developed for cloud workload prediction. Unfortunately, the state-of-the-art LSTM model leverages recurrences to predict, which naturally adds complexity and increases the inference overhead as input sequences grow longer. To develop a cloud workload prediction model with high accuracy and low inference overhead, this work presents a novel time-series forecasting model called WGAN-gp Transformer, inspired by the Transformer network and improved Wasserstein-GANs. The proposed method adopts a Transformer network as a generator and a multi-layer perceptron as a critic. The extensive evaluations with real-world workload traces show WGAN- gp Transformer achieves 5× faster inference time with up to 5.1% higher prediction accuracy against the state-of-the-art. We also apply WGAN-gp Transformer to auto-scaling mechanisms on Google cloud platforms, and the WGAN-gp Transformer-based auto-scaling mechanism outperforms the LSTM-based mechanism by significantly reducing VM over-provisioning and under-provisioning rates.
The protection of cultural heritage and property is a significant and critical task that requires collaboration and expertise in a variety of disciplines. Of the many risk factors, insect infestation is one cause of deterioration and loss. At a large, state university, disparate departments, ranging from Facilities Management to the Entomology Department and Veterinary Medicine, assisted the university museum in identifying a drywood termite infestation, determining the extent of loss and developing a plan to prevent or mitigate future infestations. Our group was able to determine the extent and severity of a drywood termite infestation in the museum storage vault through visual inspection and X-ray computed tomography (CT). This paper describes the process and heuristics of identifying and estimating the amount of active/inactive termite infestations in the art frames as well as visualizing a 3-dimensional structure to learn the extent of infestation. This interdisciplinary collaboration and effectual use of tomography enabled our group to determine the condition of several art frames through non-invasive means and develop a plan of action to identify and prevent future insect incursions within the museum.
Predictive Virtual Machine (VM) auto-scaling is a promising technique to optimize cloud applications' operating costs and performance. Understanding the job arrival rate is crucial for accurately predicting future changes in cloud workloads and proactively provisioning and de-provisioning VMs for hosting the applications. However, developing a model that accurately predicts cloud workload changes is extremely challenging due to the dynamic nature of cloud workloads. Long-Short-Term-Memory (LSTM) models have been developed for cloud workload prediction. Unfortunately, the state-ofthe-art LSTM model leverages recurrences to predict, which naturally adds complexity and increases the inference overhead as input sequences grow longer. To develop a cloud workload prediction model with high accuracy and low inference overhead, this work presents a novel time-series forecasting model called WGAN-gp Transformer, inspired by the Transformer network and improved Wasserstein-GANs. The proposed method adopts a Transformer network as a generator and a multi-layer perceptron as a critic. The extensive evaluations with real-world workload traces show WGAN-gp Transformer achieves 5× faster inference time with up to 5.1% higher prediction accuracy against the stateof-the-art approach. We also apply WGAN-gp Transformer to auto-scaling mechanisms on Google cloud platforms, and the WGAN-gp Transformer-based auto-scaling mechanism outperforms the LSTM-based mechanism by significantly reducing VM over-provisioning and under-provisioning rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.