Efficient lactic acid production from cane sugar molasses by Lactobacillus delbrueckii mutant Uc-3 in batch fermentation process is demonstrated. Lactic acid fermentation using molasses was not significantly affected by yeast extract concentrations. The final lactic acid concentration increased with increases of molasses sugar concentrations up to 190 g/liter. The maximum lactic acid concentration of 166 g/liter was obtained at a molasses sugar concentration of 190 g/liter with a productivity of 4.15 g/liter/h. Such a high concentration of lactic acid with high productivity from molasses has not been reported previously, and hence mutant Uc-3 could be a potential candidate for economical production of lactic acid from molasses at a commercial scale.
Lignocellulosic biomass, of which inedible crops are a renewable source, is expected to become one of the key renewable energy resources in the near future, to deal with global warming and the depletion of conventional fossil fuel resources. It also holds the key to supplying society's basic needs for the sustainable production of chemicals and fuels without impacting the human food supply. Despite this, the production of 2 nd generation biofuels and chemicals has not yet been commercialized. Therefore, the challenges involved in the production of lignocellulosic biomass derived fuels and chemicals must be addressed. The search for economic pretreatment methods has been recognized as one of the main hurdles for the processing of biomass to biofuels and chemicals. The conversion of all biomass components, lignin in particular, would greatly contribute to the economic viability of biomass based processes for 2 nd generation biofuels and chemicals. The highly organized crystalline structure of cellulose presents an obstacle to its hydrolysis. Hydrolysis of lignocellulose carbohydrates into fermentable sugars requires a number of different biomass degrading enzymes such as cellulases and hemicellulases. Still, a number of technical and scientific issues within pretreatment and hydrolysis remain to be solved. Depending on the raw material and pretreatment technology, the enzyme mixtures must be designed to degrade biomass carbohydrates. Rapid advances in enzyme, microbial and plant engineering would provide the necessary breakthroughs for the successful commercialization of biomass derived fuels and chemicals.
Fire assumes a significant job in mortal life still alongside that it's dangerous too. Fire circumstance is a catastrophe that can beget the loss of mortal life, property detriment, and lasting incapacity to the told casualty. Firemen are principally entrusted to deal with the fire circumstance, yet regularly they presented to the advanced troubles when quenching fire particularly in dangerous conditions, for illustration, in atomic force plant, oil painting oil treatment installations, and gas tanks. With the development in the field of robotics, mortal intrusion has come less and robots are being considerably used for safety purpose. In our day- to- day lives, fire accidents have come common and sometimes may lead to hazards that make it hard for the firemen to cover mortal life. In analogous cases, a firefighting robot is used to guard mortal lives, wealth and surroundings from the fire accidents. also, we apply two modes of robotic operations-Automatic mode & Homemade mode. In Automatic mode, the robot takes controls by itself grounded on the stoner predefined command. In Homemade mode, the robot can be controlled by the stoner. therefore, this paper presents the advancement of putting out fires using Robots that can quench the fire without the demand for firemen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.