A cup of tea that cheers can also be an important route of human exposure to pesticide residues. It is important to evaluate the percent transfer of pesticide residue from dried (made) tea to tea infusion, as tea is subjected to an infusion process prior to human consumption. To investigate the pesticide translocation, 13 pesticides commonly used on tea were studied by subjection of fortified teas to infusion. Analytes of interest were quantified by gas-liquid chromatography with nitrogen-phosphorus and electron capture detectors. Interestingly, water solubility of pesticides did not necessarily indicate a shift of residues toward their preferential accumulation in infusion. The pesticides with larger partition coefficient (K(ow)) values remained nonextractable in infusing water. Further, boiling for longer periods (extended brewing time) resulted in higher transfer of pesticides to tea brew.
Tea (both green and black) is consumed throughout the world, both for pleasure and therapeutic purposes. Most people will be unaware of their involuntary exposure to residues of pesticides lingering in processed tea and so possibly transferring into infusions of tea. The purpose of this work was to study the effect of green tea and orthodox black tea manufacturing processes on the fate of pesticides sprayed onto tea bushes (Camellia sinensis). The fates of residues of dimethoate, quinalphos, dicofol and deltamethrin in these two different types of tea manufacturing processes were compared. For black tea, the manufacturing process involves leaf harvesting, withering, rolling, fermentation and drying; and for green tea, leaf harvesting, microwave heating, rolling and drying. The two processes resulted in the same concentration factor of plant material into the dried commodity, while the decreases in residue levels were different for different pesticides. Initial microwave heating and dehydration in the green tea manufacturing process resulted in greater loss of pesticide residues than did withering and dehydration in black tea; no significant reduction in residue level resulted from the rolling and fermentation steps in black tea. Residue levels in both green and black teas were reduced during final drying.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.