In the present study, we report a highly effective electrochemical sensor for detecting 2,4-dinitrotoluene (2,4-DNT). The amperometric determination of 2,4-DNT was carried out using a gold electrode modified with zinc–metal organic framework-8 and silver quantum dot (Zn-MOF-8@AgQDs) composite. The synthesized nanomaterials were characterized by using transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and X-ray powder diffraction (XRD). The synthesized nanocomposite proved to be efficient in electro-catalysis thereby reducing the 2,4-DNT. The unique combination present in Zn-MOF-8@AgQDs composite offered an excellent conductivity and large surface area enabling the fabrication of a highly sensitive (−0.238 µA µM−1 cm−2), selective, rapid and stable 2,4-DNT sensor. The dynamic linear range and limit of detection (LOD) was about 0.0002 µM to 0.9 µM and 0.041 µM, respectively. A 2,4-DNT reduction was also observed during the linear sweep voltammetry (LSV) experiments with reduction peaks at −0.49 V and −0.68 V. This is an unprecedented report with metal organic framework (MOF) composite for sensing 2,4-DNT. In addition, the presence of other species such as thiourea, urea, ammonia, glucose, and ascorbic acid displayed no interference in the modified electrode suggesting its practicability in various environmental applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.