Vitamin C (Vit C) is an essential micronutrient and antioxidant for human health. Unfortunately, Vit C cannot be produced in humans and is ingested through diet while severe deficiencies can lead to scurvy. However, consumption is often inconsistent, and foods vary in Vit C concentrations. Biofortification, the practice of increasing micronutrient or mineral concentrations, can improve the nutritional quality of crops and allow for more consistent dietary levels of these nutrients. Of the three leading biofortification practices (i.e., conventional, transgenic, and agronomical), the least explored approach to increase Vit C in microgreens is agronomically, especially through the supplemental application of ascorbic acid. In this study, biofortification of Vit C in microgreens through supplemental ascorbic acid was attempted and proven achievable. Arugula (Eruca sativa 'Astro') microgreens were irrigated with four concentrations of ascorbic acid and a control. Total Vit C (T-AsA) and ascorbic acid increased in microgreens as supplementary concentrations increased. In conclusion, biofortification of Vit C in microgreens through supplemental ascorbic acid is achievable, and consumption of these bio-fortified microgreens could help fulfill the daily Vit C requirements for humans, thereby reducing the need for supplemental vitamins.
The consumption of plants plays an important role in human health. In addition to providing macro and micronutrients, plants are the sole sources of several phytonutrients that play a major role in disease prevention. However, in modern diets, increased consumption of cheaper, processed foods with poor nutritional value over fruits and vegetables leads to insufficient consumption of essential nutrients such as vitamin C. Taking supplements can address some of the insufficient nutrients in a diet. However, supplements are not as diverse or bioavailable as the nutrients in plants. Improving the abundance of nutrients in plants will reduce the amounts that need to be consumed, thereby reducing the price barrier and use of supplements. In this study, broccoli (Brassica oleracea var. italica) microgreens grown in a controlled environment were biofortified for increased vitamin C content. The microgreens grown on growing pads were treated with supplemental nutrient solutions. Treatments were applied four to five days after germination and included four different concentrations of ascorbic acid specifically, 0% (control), 0.05%, 0.1%, 0.25% and 0.5%, added to the nutrient solution. Microgreens with turgid cotyledons and appearance of tip of first true leaves were harvested about 14 days after germination and were analyzed for biomass, chlorophylls, carotenoids, vitamin C and other minerals content. The ascorbic acid improved the microgreens’ fresh biomass, percent dry matter, chlorophylls, carotenoids, vitamin C, and potassium content. Moreover, this study also mapped out the correlation between ascorbic acid, phytochemicals, and broccoli microgreens’ mineral composition. The total vitamin C was positively correlated to K and negatively correlated to chlorophylls, N, P, Mg, Ca, S, and B (p < 0.01). These relationships can be applied in future vitamin C biofortification research across different microgreens. In conclusion, vitamin C was increased up to 222% by supplemental ascorbic acid without being detrimental to plant health and mineral composition.
In arid and semi-arid climates, water scarcity and nutrient availability are major constraints for food production. Excess fertilization to make up for the limited nutrient availability in dry soils leads to nitrogen runoff and groundwater contamination. Reducing nitrogen leaching into surface water while providing adequate nutrition remains a major challenge. Superabsorbent polymers (SAPs) can reduce water loss and improve nutrient retention and therefore minimize leaching and increase crop yields. SAPs are made from petroleum or natural products, but plant-based SAPs have been gaining popularity because they have fewer long-term effects on the environment. However, there is little known about how SAPs made from cornstarch effect plant growth and production in tomatoes. So, we evaluated total nitrogen and water retention in SAP-treated soils and evaluated their effects on growth and development of tomatoes (Solanum lycopersicum). Soils were amended with different rates of cornstarch-based SAP (i.e., 0 kg SAP, 0 kg SAP+N, 0.5 kg SAP+N, 1 kg SAP+N, 1.5 kg SAP+N, and 2 kg SAP+N). Results indicate that the mean volume of water and nitrates retained in the soils amended with cornstarch-based SAPs increased with increasing rate of SAP. The treatment containing the highest dose (i.e., 2 kg SAP) decreased the amount of leachate and nitrates from soil 79.34% and 93.11% at 3 days after fertilization (DAF) and 78.84% and 81.58% at 9 DAF in comparison with the soil-only and fertilizer-only treatments, respectively. The results also indicate cornstarch-based SAP significantly improved plant growth and yield parameters compared with the treatments without SAP. Furthermore, the greatest number of leaves, flowers, fruits, and dry matter production were found in the 1-kg SAP treatment. Therefore, application of cornstarch-based SAPs can improve tomato production in times of drought stress by retaining more water and nutrients in the active rooting zone and can reduce environmental pollution by reducing nitrogen runoff.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.