Akt is a critical mediator of insulin-stimulated glucose uptake in skeletal muscle. The acetyltransferases, E1A binding protein p300 (p300) and cAMP response element-binding protein binding protein (CBP) are phosphorylated and activated by Akt, and p300/CBP can acetylate and inactivate Akt, thus giving rise to a possible Akt-p300/CBP axis. Our objective was to determine the importance of p300 and CBP to skeletal muscle insulin sensitivity. We used Cre-LoxP methodology to generate mice with germline [muscle creatine kinase promoter (P-MCK and C-MCK)] or inducible [tamoxifen-activated, human skeletal actin promoter (P-iHSA and C-iHSA)] knockout of p300 or CBP. A subset of P-MCK and C-MCK mice were switched to a calorie-restriction diet (60% of ad libitum intake) or high-fat diet at 10 wk of age. For P-iHSA and C-iHSA mice, knockout was induced at 10 wk of age. At 13–15 wk of age, we measured whole-body energy expenditure, oral glucose tolerance, and/or ex vivo skeletal muscle insulin sensitivity. Although p300 and CBP protein abundance and mRNA expression were reduced 55%–90% in p300 and CBP knockout mice, there were no genotype differences in energy expenditure or fasting glucose and insulin concentrations. Moreover, neither loss of p300 or CBP impacted oral glucose tolerance or skeletal muscle insulin sensitivity, nor did their loss impact alterations in these parameters in response to a calorie restriction or high-fat diet. Muscle-specific loss of either p300 or CBP, be it germline or in adulthood, does not impact energy expenditure, glucose tolerance, or skeletal muscle insulin action.
Whether the histone deacetylase (HDAC) and sirtuin families of protein deacetylases regulate insulin-stimulated glucose uptake, independent of their transcriptional effects, has not been studied. Our objective was to determine the nontranscriptional role of HDACs and sirtuins in regulation of skeletal muscle insulin action. Basal and insulin-stimulated glucose uptake and signaling and acetylation were assessed in L6 myotubes and skeletal muscle from C57BL/6J mice that were treated acutely (1 h) with HDAC (trichostatin A, panobinostat, TMP195) and sirtuin inhibitors (nicotinamide). Treatment of L6 myotubes with HDAC inhibitors or skeletal muscle with a combination of HDAC and sirtuin inhibitors increased tubulin and pan-protein acetylation, demonstrating effective impairment of HDAC and sirtuin deacetylase activities. Despite this, neither basal nor insulin-stimulated glucose uptake or insulin signaling was impacted. Acute reduction of the deacetylase activity of HDACs and/or sirtuins does not impact insulin action in skeletal muscle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.