Alcohol (ethanol) at concentrations reached in blood following moderate to heavy drinking (30–80 mM) reduces cerebral artery diameter via inhibition of voltage- and calcium-gated potassium channels of large conductance (BK) in cerebral artery smooth muscle. These channels consist of channel-forming α and regulatory β1 subunits. A high-cholesterol diet protects against ethanol-induced constriction via accumulation of cholesterol within the vasculature. The molecular mechanisms of this protection remain unknown. In the present work, we demonstrate that in vitro cholesterol enrichment of rat middle cerebral arteries significantly increased cholesterol within arterial tissues and blunted constriction by 50 mM of ethanol. Ethanol-induced BK channel inhibition in inside-out patches excised from freshly isolated cerebral artery myocytes was also abolished by cholesterol enrichment. Enrichment of arteries with enantiomeric cholesterol (ent-cholesterol) also blunted BK channel inhibition and cerebral artery constriction in response to ethanol. The similar protection of cholesterol and ent-cholesterol against ethanol action indicates that this protection does not require protein site(s) that specifically sense natural cholesterol. Cholesterol-driven protection against ethanol-induced BK channel inhibition and vasoconstriction was replicated in myocytes and middle cerebral arteries of C57BL/6 mice. BK β1 subunits are known to regulate vascular diameter and its modification by ethanol. However, blunting of an ethanol effect by in vitro cholesterol enrichment was observed in arteries and myocyte membrane patches from BK β1 (KCNMB1) knockout mice. Thus, BK β1 subunits are not needed for cholesterol protection against ethanol effect on BK channel function and cerebral artery diameter.
In BriefProteome analysis was performed to determine whether fetal alcohol exposure during mid-pregnancy would evoke changes in protein profile of fetal cerebral artery in baboons. We detected that levels of 238 proteins differed significantly between control and alcoholexposed fetuses. Proteins of metabolic pathways represented one of the major targets of alcohol. The differences were detected near term, long after alcohol exposure took place. Our findings point at novel targets of alcohol within developing brain vessels. Graphical Abstract Highlights• We studied mid-pregnancy alcohol exposure and baboon fetal cerebral artery.• 238 proteins differed between control and alcohol-exposed fetuses near-term.• Proteins of metabolic pathways represented one of the major targets of alcohol.• Alcohol effect on the development of fetal brain vessels is persistent.Alcohol is one of the most widely misused substances in the world. Alcohol consumption by pregnant women often results in an array of fetal developmental abnormalities, but the damage to the fetus by alcohol remains poorly understood. The limited knowledge regarding the molecular targets of alcohol in the developing fetus constitutes one of the major obstacles in developing effective pharmacological interventions that could prevent fetal damage after alcohol consumption by pregnant women. The fetal cerebral artery is emerging as an important mediator of fetal cerebral damage by maternal alcohol drinking. In the present work, we conduct proteomics analysis of cerebral (basilar) artery lysates of near-term fetal baboons to search for protein targets of fetal alcohol exposure. Our study demonstrates that 3 episodes of binge alcohol exposure during the second trimester-equivalent of human pregnancy are sufficient to render profound changes in fetal cerebral artery proteome. These changes persisted, as they were detected in near-term fetuses. In particular, the relative abundance of 238 proteins differed significantly between control and alcohol-exposed fetuses. Enrichment analysis pointed at the group of metabolic activity proteins as a major class targeted by alcohol. Western blotting confirmed upregulation of the aldehyde dehydrogenase 6 family member A1 (ALDH6A1) in cerebral artery lysates from alcohol-exposed fetuses. This upregulation translated to greater ALDH activity of cerebral artery lysate of near-term fetuses following prenatal alcohol exposure when compared with controls. Molecular
Statins constitute the most commonly prescribed drugs to decrease cholesterol (CLR). CLR is an important modulator of alcohol-induced cerebral artery constriction (AICAC). Using rats on a high CLR diet (2% CLR) we set to determine whether atorvastatin administration (10 mg/kg daily for 18–23 weeks) modified AICAC. Middle cerebral arteries were pressurized in vitro at 60 mmHg and AICAC was evoked by 50 mM ethanol, that is within the range of blood alcohol detected in humans following moderate-to-heavy drinking. AICAC was evident in high CLR + atorvastatin group but not in high CLR diet + placebo. Statin exacerbation of AICAC persisted in de-endothelialized arteries, and was blunted by CLR enrichment in vitro. Fluorescence imaging of filipin-stained arteries showed that atorvastatin decreased vascular smooth muscle (VSM) CLR when compared to placebo, this difference being reduced by CLR enrichment in vitro. Voltage- and calcium-gated potassium channels of large conductance (BK) are known VSM targets of ethanol, with their beta1 subunit being necessary for ethanol-induced channel inhibition and resulting AICAC. Ethanol-induced BK inhibition in excised membrane patches from freshly isolated myocytes was exacerbated in the high CLR diet + atorvastatin group when compared to high CLR diet + placebo. Unexpectedly, atorvastatin decreased the amount and function of BK beta1 subunit as documented by immunofluorescence imaging and functional patch-clamp studies. Atorvastatin exacerbation of ethanol-induced BK inhibition disappeared upon artery CLR enrichment in vitro. Our study demonstrates for the first time statin’s ability to exacerbate the vascular effect of a widely consumed drug of abuse, this exacerbation being driven by statin modulation of ethanol-induced BK channel inhibition in the VSM via CLR-mediated mechanism.
Large conductance, Ca2+i- and voltage-gated K+ (BK) channels regulate myogenic tone and thus, arterial diameter. In smooth muscle (SM), BK channels include channel-forming α and auxiliary β1 subunits. BK β1 increases the channel’s Ca2+ sensitivity allowing BK channels to negatively feed-back on depolarization-induced Ca2+-entry, oppose SM contraction and favor vasodilation. Thus, endothelial-independent vasodilation can be evoked though targeting of SM BK β1 by endogenous ligands, including lithocholate (LCA). Here, we investigated the expression of BK β1 across arteries of the cerebral and peripheral circulations, and the contribution of such expression to channel function and BK β1–mediated vasodilation. Data demonstrate that endothelium-independent, BK β1-mediated vasodilation by LCA is larger in coronary (CA) and basilar (BA) arteries than in anterior cerebral (ACA), middle cerebral (MCA), posterior cerebral (PCA), and mesenteric (MA) arteries, all arterial segments having a similar diameter. Thus, differential dilation occurs in extracranial arteries which are subjected to similar vascular pressure (CA vs. MA), and in arteries that irrigate different brain regions (BA vs. ACA, MCA, PCA). SM BK channels from BA and CA displayed increased basal activity and LCA responses, indicating increased BK β1 functional presence. Indeed, in the absence of detectable changes in BK α, BA and CA myocytes showed an increased location of BK β1 in the plasmalemma/subplasmalemma. Moreover, these myocytes distinctly showed increased BK β1 mRNA levels. Supporting a major role of enhanced BK β1 transcripts in artery dilation, LCA-induced dilation of MCA transfected with BK β1 cDNA was as high as LCA-induced dilation of untransfected BA or CA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.