Lung cancer is a potentially lethal illness. Cancer detection continues to be a challenge for medical professionals. The true cause of cancer and its complete treatment have still not been discovered. Cancer that is caught early enough can be treated. Image processing methods such as noise reduction, feature extraction, identification of damaged regions, and maybe a comparison with data on the medical history of lung cancer are used to locate portions of the lung that have been impacted by cancer. This research shows an accurate classification and prediction of lung cancer using technology that is enabled by machine learning and image processing. To begin, photos need to be gathered. In the experimental investigation, 83 CT scans from 70 distinct patients were utilized as the dataset. The geometric mean filter is used during picture preprocessing. As a consequence, image quality is enhanced. The
K
-means technique is then used to segment the images. The part of the image may be found using this segmentation. Then, classification methods using machine learning are used. For the classification, ANN, KNN, and RF are some of the machine learning techniques that were used. It is found that the ANN model is producing more accurate results for predicting lung cancer.
A new Symmetric Solar Fed Inverter (SSFI) proposed with a reduced number of components compared to the classical, modified, conventional type of Multilevel Inverter (MLI). The objective of this architecture is to design fifteen-level SSFI, this circuit uses a single switch with minimizing harmonics, and Modulation Index (MI) values. Power Quality (PQ) is developed by using the optimization algorithms like as Particle Swarm Optimization (PSO), Genetic algorithm (GA), Modified Firefly Algorithm (MFA). It’s determined to generate the gating pulse and finding optimum firing angle values calculate as per the input of MPP intelligent controller schemes. The proposed circuit is solar fed inverter used for optimization techniques governed by switching controller approach delivers a major task. The comparison is made for different optimization algorithm has significantly reduced the harmonic content by varying the modulation index and switching angle values. SSFI generates low distortion output uses through without any additional filter component through utilizing MATLAB Simulink software (2020a). The SSFI circuit assist Xilinx Spartan 3-AN Filed Program Gate Array (FPGA) tuned by optimization techniques are presented for the effectiveness of the proposed model.
Cancer has a disproportionately large influence on the death rate of adults. A patient needs to get a diagnosis of their condition as quickly as is humanly feasible in order to have the greatest chance of surviving their sickness. Skilled medical professionals use medical imaging and other traditional diagnostic methods to search for clues that may indicate the presence of malignant tendencies inside the body. Nevertheless, manual diagnosis may be time-consuming and subjective owing to the wide range of interobserver variability induced by the enormous number of medical imaging data. This variability is caused by the fact that medical imaging data are collected. Because of this, the process of accurately diagnosing a patient could become more difficult. To execute jobs that included machine learning and the interpretation of complicated imagery, cutting-edge computer technology was necessary. Since the 1980s, researchers have been working on developing a computer-aided diagnostic system that would help medical professionals in the early diagnosis of various malignancies. According to the most recent projections, prostate cancer will be discovered in the body of one out of every seven men at some time throughout the course of their life. It is unacceptable how many men are being told that they have prostate cancer, and the condition is responsible for the deaths of a rising number of men every year. Because of the high quality and multidimensionality of the MRI pictures, you will also need a powerful diagnosis system in addition to the CAD tools. Since it has been shown that CAD technology is beneficial, researchers are looking at methods to improve the accuracy, precision, and speed of the systems that use it. The effectiveness of CAD technology has been shown. This research proposes a strategy that is both effective and efficient for the processing of images and the extraction of features as well as for machine learning. This work makes use of MRI scans and machine learning in an effort to detect prostate cancer at an early stage. Histogram equalization is used while doing the preliminary processing on photographs. The image’s overall quality is elevated as a result. The fuzzy C means approach is used in order to segment the images. Using a Gray Level Cooccurrence Matrix (GLCM), it is feasible to extract features from a dataset. The KNN, random forest, and AdaBoost classification algorithms are used in the classification process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.