Background
Sperm motility parameters, which can be measured objectively and repeatedly by a computer-assisted sperm analysis (CASA) system, are important indicators of sperm quality. However, the sperm motility parameters assessed by a CASA system can be affected by various factors, including instrument components and settings, sperm preparation or analysis procedures. To date, no standardized protocol is available that would permit to assess sperm kinetic characteristics in passerine birds and this lack precludes any comparison of sperm swimming ability and sperm quality across species.
Methods
In this study, we chose the Tree Sparrow (Passer montanus) as the object to evaluate sperm motility parameters, including sperm motility, sperm velocity and sperm movement trajectory, at different analysis time, temperatures and pH using the WLJY-9000 CASA system.
Results
Sperm motility parameters remained statistically unchanged at 1‒9 min. Progressive motility was similar at 38 °C and 40 °C, but a greater percentage of slow progressive sperm was detected at 38 °C compared to 40 °C and 42 °C. Additionally, progressive motility was lower and immotility was higher at 42 °C than 38 °C and/or 40 °C (close to the body temperature of the Tree Sparrow). The percentages of rapid progressive sperm, progressive sperm and immotile sperm were statistically similar at pH 7.0, 7.5 and 8.0 with the exception of lower percentage of progressive sperm at pH 7.0 compared to pH 7.5. In addition, slower sperm velocity and worse sperm movement trajectory were found at pH 6.0 and 9.0 than those at pH 8.0, 7.5 or 7.0.
Conclusions
Our study indicates that the ideal conditions for sperm motility parameters assessment in Tree Sparrow are obtained between 1 and 9 min after dilution, an environment at body temperature (40 °C) and a pH around 7.5‒8.0. The results of this study provide a reference for the evaluation of sperm characteristics and sperm quality using a CASA system in passerine birds.
Vegetables and crops can take up heavy metals when grown on polluted lands. The concentrations and dynamic uptake of heavy metals vary at different growth points for different vegetables. In order to assess the safe consumption of vegetables in weak alkaline farmlands, Chinese cabbage and radish were planted on the farmlands of Baiyin (polluted site) and Liujiaxia (relatively unpolluted site). Firstly, the growth processes of two vegetables were recorded. The growth curves of the two vegetables observed a slow growth at the beginning, an exponential growth period, and a plateau towards the end. Maximum concentrations of copper (Cu), zinc (Zn), lead (Pb), and cadmium (Cd) were presented at the slow growth period and showed a downtrend except the radish shoot. The concentrations of heavy metals (Cu, Zn, and Cd) in vegetables of Baiyin were higher than those of Liujiaxia. In the meanwhile, the uptake contents continued to increase during the growth or halted at maximum at a certain stage. The maximum uptake rates were found on the maturity except for the shoot of radish which took place at the exponential growth stages of root. The sigmoid model could simulate the dynamic processes of growth and heavy metals uptake of Chinese cabbage and radish. Conclusively, heavy metals have higher bioaccumulation tendency for roots in Chinese cabbage and for shoots in radish.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.