Spatial metabolomics can reveal intercellular heterogeneity and tissue organization. To achieve highest spatial resolution, we reported a novel Spatial single nuclEar metAboloMics (SEAM) method, a scalable platform combining high resolution imaging mass spectrometry (IMS) and a series of computational algorithms, that can display multiscale/multicolor tissue tomography together with identification and clustering of single nuclei by their in situ metabolic fingerprints. We firstly applied SEAM to a range of wild type mouse tissues, then delineate a consistent pattern of metabolic zonation in mouse liver. We further studied spatial metabolome in human fibrotic liver. Intriguingly, we discovered novel subpopulations of hepatocytes with special metabolic features associated with their proximity to fibrotic niche, which was further validated by spatial transcriptomics with Geo-seq. These demonstrations highlight how SEAM may be used to explore the spatial metabolome and tissue anatomy at single cell level, hence leading to a deeper understanding of the tissue metabolic organization.
Clinical and experimental data have shown that the receptor for advanced glycation end products (RAGE) is implicated in the pathogenesis of respiratory disorders. In this study, we genotyped five widely-evaluated variants in RAGE gene, aiming to assess their association with the risk for chronic obstructive pulmonary disease (COPD) and asthma in northern Han Chinese. Genotypes were determined in 105 COPD patients, 242 asthma patients and 527 controls. In single-locus analysis, there was significant difference in the genotype distributions of rs1800624 between COPD patients and controls ( p =0.022), and the genotype and allele distributions of rs1800625 differed significantly ( p =0.040 and 0.016) between asthma patients and controls. Haplotype analysis revealed that haplotype T-A-G-T (allele order: rs1800625, rs1800624, rs2070600, rs184003) was significantly associated with a reduced COPD risk (OR=0.32, 95% CI: 0.06-0.60), and haplotype T-A-A-G was significantly associated with a reduced asthma risk (OR=0.19, 95% CI: 0.04-0.96). Further haplotype-phenotype analysis showed that high- and low-density lipoprotein cholesterol and blood urea nitrogen were significant mediators for COPD ( p sim =0.041, 0.043 and 0.030, respectively), and total cholesterol was a significant mediator for asthma ( p sim =0.009). Taken together, our findings indicate that RAGE gene is a promising candidate for COPD and asthma, and importantly both disorders are genetically heterogeneous.
Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease characterized by chronic inflammation, emphysema, airway remodeling, and altered lung function. Despite the canonical classification of COPD as a neutrophilic disease, blood and airway eosinophilia are found in COPD patients. Identifying the tools to assess eosinophilic airway inflammation in COPD models during stable disease and exacerbations will enable the development of novel anti-eosinophilic treatments. We developed different animal models to mimic the pathological features of COPD. Our results show that eosinophils accumulated in the lungs of pancreatic porcine elastase-treated mice, with emphysema arising from the alveolar septa. A lipopolysaccharide challenge significantly increased IL-17 levels and induced a swift change from a type-2 response to an IL-17-driven inflammatory response. However, lipopolysaccharides can exacerbate cigarette smoking-induced airway inflammation dominated by neutrophil infiltration and airway remodeling in COPD models. Our results suggest that eosinophils may be associated with emphysema arising from the alveolar septa, which may be different from the small airway disease-associated emphysema that is dominated by neutrophilic inflammation in cigarette smoke-induced models. The characterization of heterogeneity seen in the COPD-associated inflammatory signature could pave the way for personalized medicine to identify new and effective therapeutic approaches for COPD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.