Energy distribution over wavelet subbands is a widely used feature for wavelet packet based texture classification. Due to the overcomplete nature of the wavelet packet decomposition, feature selection is usually applied for a better classification accuracy and a compact feature representation. The majority of wavelet feature selection algorithms conduct feature selection based on the evaluation of each subband separately, which implicitly assumes that the wavelet features from different subbands are independent. In this paper, the dependence between features from different subbands is investigated theoretically and simulated for a given image model. Based on the analysis and simulation, a wavelet feature selection algorithm based on statistical dependence is proposed. This algorithm is further improved by combining the dependence between wavelet feature and the evaluation of individual feature component. Experimental results show the effectiveness of the proposed algorithms in incorporating dependence into wavelet feature selection.
In this paper, application of sparse representation (factorization) of signals over an overcomplete basis (dictionary) for signal classification is discussed. Searching for the sparse representation of a signal over an overcomplete dictionary is achieved by optimizing an objective function that includes two terms: one that measures the signal reconstruction error and another that measures the sparsity. This objective function works well in applications where signals need to be reconstructed, like coding and denoising. On the other hand, discriminative methods, such as linear discriminative analysis (LDA), are better suited for classification tasks. However, discriminative methods are usually sensitive to corruption in signals due to lacking crucial properties for signal reconstruction. In this paper, we present a theoretical framework for signal classification with sparse representation. The approach combines the discrimination power of the discriminative methods with the reconstruction property and the sparsity of the sparse representation that enables one to deal with signal corruptions: noise, missing data and outliers. The proposed approach is therefore capable of robust classification with a sparse representation of signals. The theoretical results are demonstrated with signal classification tasks, showing that the proposed approach outperforms the standard discriminative methods and the standard sparse representation in the case of corrupted signals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.