Current maintenance, having a great impact on the safety, reliability and economics of a gas turbine, becomes the major obstacle for the application of gas turbines in energy field. An effective solution is to process condition based maintenance (CBM) thoroughly for gas turbines. Maintenance of high temperature blade, accounting for the most of the maintenance costs and time, is the crucial section of gas turbine maintenance. The suggested life of high temperature blade by original equipment manufacturer (OEM) is based on several certain operating conditions, which is used for time based maintenance (TBM). Thus, for the requirement of gas turbine CBM, a damage evaluation model is demanded to estimate the life consumption online. A physics-based model is built, consisting of thermodynamic performance simulation model, stress estimation model, thermal estimation model, and interactive damage analysis model. Unmeasured parameters are simulated by the thermodynamic performance simulation model, as the input of the stress estimation model and the thermal estimation model. Due to the ability to analyze online data, this model can be used to calculate online damage and support CBM decision. Then the stress and temperature distribution of blades will become as the input of the creep damage analysis model and the fatigue damage analysis model. The interactive damage of blades will be evaluated based on the creep and fatigue analysis results. To validate this physics-based model, it is used to calculate the lifes of high temperature blade under several certain operating conditions. And the results are compared to the suggestion value of OEM. An application case is designed to evaluate the application effect of this model. The result shows that the relative error of this model is less than 10.4% in selected cases. And it can cut overhaul costs and increase the availability of gas turbines significantly. Finally, a simple application of this model is proposed to show its functions. The physical-based damage evaluation model proposed in this paper is found to be a useful tool to tracing the online life consumption of a high temperature blade, to support the implementation of CBM for gas turbines, and to guarantee the reliability of gas turbines with lowest maintenance costs.
The inter-turbine burner (ITB) engine, which is introduced ITB between high and low pressure turbines, is a relatively new concept for increasing specific thrust and lowering high altitude specific fuel consumption (SFC) than engine with afterburner. While ITB engine brings outstanding performance improvement, it also brings challenges to the ITB engine control law design under unknown matching mechanism and multi-constraint. In this study, a self-scheduling control law design method for ITB engine mode transition that takes into account the ITB ignition and flameout characteristics and cooling air volume is proposed. This method derives the control law based on the global optimal algorithm and SHAP-value (SHapley additive exPlanation) analysis method, which avoids manual analysis and reduces the number of adjustment of variable geometric components. An ITB transient model is established to verify the control laws under the switching of ignition and flameout modes. Both flow fluctuations do not exceed 2%, and thrust fluctuations do not exceed 4% and 2% respectively. During the transition between the two modes, at most one variable geometry component is adjusted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.