The effect of palmitic acid (PA) on stem browning was investigated in freshly harvested mini-Chinese cabbage (Brassica pekinensis). Results indicated that concentrations of PA ranging from 0.03 g L−1 to 0.05 g L−1 inhibited stem browning and decreased the rate of respiration, electrolyte leakage, and weight loss, as well as the level of malondialdehyde (MDA) in freshly harvested mini-Chinese cabbage stored at 25 °C for 5 d. The PA treatment enhanced the activity of antioxidant enzymes (ascorbate peroxidase (APX), catalase (CAT), peroxidase (POD), 4-coumarate:CoA ligase (4CL) and phenylalamine ammonia lyase (PAL)), and inhibited the activity of polyphenol oxidase (PPO). The PA treatment also increased the level of several phenolics (chlorogenic acid, gallic acid, catechin, p-coumaric acid, ferulic acid, p-hydroxybenzoic acid, and cinnamic acid) and flavonoids (quercetin, luteolin, kaempferol, and isorhamnetin). In summary, results indicate that treatment of mini-Chinese cabbage with PA represents an effective method for delaying stem browning and maintaining the physiological quality of freshly harvested mini-Chinese cabbage due to the ability of PA to enhance antioxidant enzyme activity and the level of phenolics and flavonoids during 5 d.
Foodborne illnesses present a major threat to public health and are frequently attributed to foodborne pathogens present on fresh produce. Some opportunistic pathogens of broccoli are also responsible for causing head rot. Three different light treatments, UV-C, red LED (50 μml/m2/s), and UV-C + LED were used to treat broccoli prior to or during storage. Following the light treatments, microorganisms present in eluates obtained from the surface of broccoli heads were characterized using a metagenomic approach. Metagenomic DNA libraries were subjected to high-throughput sequencing on an Illumina Hiseq platform. Results indicated that the combined treatment of LED red light and UV-C provided the best sensory preservation of broccoli, followed by LED red light and then UV-C. The bacterial communities in the eluates obtained from the surface of broccoli heads in all three light treatments were primarily represented at the phylum level by Proteobacteria and Firmicutes, while fungal communities were primarily represented by Ascomycota and Basidiomycota. Further analysis indicated that the all three light treatments reduced the presence of foodborne pathogens and bacterial taxa responsible for broccoli spoilage. While UV-C had a significant inhibitory effect on Botrytis cinerea, the light treatments increased the relative abundance of Pseudomonas fluorescens. Results indicate that a metagenomic approach can be used to detect pathogenic bacteria and fungi on fresh vegetables and assess the impact of management practices, such as light treatments, designed to maintain postharvest quality, on the composition of the microbiome present on the surface of harvested produce.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.