Heterogeneous solid base catalysis is valuable and promising in chemical industry, however it is insufficiently developed compared to solid acid catalysis due to the lack of satisfied solid base catalysts. To gain the strong basicity, the previous strategy was to basify oxides with alkaline metals to create surficial vacancies or defects, which suffers from the instability under catalytic conditions. Monocomponent basic oxides like MgO are literally stable but deficient in electron-withdrawing ability. Here we prove that a special connectivity of atoms could enhance the Lewis basicity of oxygen in monocomponent solids exemplified by GaBO. The structure-induced basicity is from the μ-O linked exclusively to five-coordinated Ga. GaBO behaved as a durable catalyst with a high yield of 81% in the base-catalyzed synthesis of α-aminonitriles by Strecker reaction. In addition, several monocomponent solid bases were evaluated in the Strecker reaction, and GaBO has the largest amount of strong base centers (23.1 μmol/g) and the highest catalytic efficiency. GaBO is also applicable in high-temperature solid-gas catalysis, for example, GaBO catalyzed efficiently the dehydrogenation of n-propanol, resulting in a high selectivity to propanal (79%). In contrast, the comparison gallium borate, Ga-PKU-1, which is a Brönsted acid, preferred to catalyze the dehydration process to obtain propylene with a selectivity of 94%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.