Influenza virus infects the host and transmits through the respiratory tract (i.e., the mouth and nose); therefore, the development of intranasal influenza vaccines that mimic the natural infection, coupled with an efficient mucosal adjuvant, is an attractive alternative to current parenteral vaccines. However, with the withdrawal of cholera toxin and Escherichia coli heat-labile endotoxin from clinical use due to side effects, there are no approved adjuvants for intranasal vaccines. Therefore, safe and effective mucosal adjuvants are urgently needed. Previously, we reported that one derivative of α-Galactosylceramide (α-GalCer), 7DW8-5, could enhance the protective efficacy of split influenza vaccine by injection administration. However, the mucosal adjuvanticity of 7DW8-5 is still unclear. In this study, we found that 7DW8-5 promotes the production of secret IgA antibodies and IgG antibodies and enhances the protective efficacy of the split influenza vaccine by intranasal administration. Furthermore, co-administration of 7DW8-5 with the split influenza vaccine significantly reduces the virus shedding in the upper and lower respiratory tract after lethal challenge. Our results demonstrate that 7DW8-5 is a novel mucosal adjuvant for the split influenza vaccine.
Influenza virus only encodes a dozen of viral proteins, which need to use host machinery to complete the viral life cycle. Previously, KAP1 was identified as one host protein that potentially interacts with influenza viral proteins in HEK 293 cells. However, the role of KAP1 in influenza virus replication in human lung alveolar epithelial cells and the underlying mechanism remains unclear. In this study, we first generated KAP1 KO A549 cells by CRISPR/Cas9 gene editing. KAP1 deletion had no significant effect on the cell viability and lack of KAP1 expression significantly reduced the influenza A virus replication. Moreover, we demonstrated that KAP1 is involved in the influenza virus entry, transcription/replication of viral genome, and viral protein synthesis in human lung epithelial cells and confirmed that KAP1 interacted with PB2 and NS1 viral proteins during the virus infection. Further study showed that KAP1 inhibited the production of type I IFN and overexpression of KAP1 significantly reduced the IFN-β production. In addition, influenza virus infection induces the deSUMOylation and enhanced phosphorylation of KAP1. Our results suggested that KAP1 is required for the replication of influenza A virus and mediates the replication of influenza A virus by facilitating viral infectivity and synthesis of viral proteins, enhancing viral polymerase activity, and inhibiting the type I IFN production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.