Accurate dose assessment within 1 day or even 12 h after exposure through current methods of dose estimation remains a challenge, in response to a large number of casualties caused by nuclear or radiation accidents. P53 signaling pathway plays an important role in DNA damage repair and cell apoptosis induced by ionizing radiation. The changes of radiation-induced P53 related genes in the early stage of ionizing radiation should compensate for the deficiency of lymphocyte decline and γ-H2AX analysis as novel biomarkers of radiation damage. Bioinformatic analysis was performed on previous data to find candidate genes from human peripheral blood irradiated in vitro. The expression levels of candidate genes were detected by RT-PCR. The expressions of screened DDB2, AEN, TRIAP1, and TRAF4 were stable in healthy population, but significantly up-regulated by radiation, with time specificity and dose dependence in 2–24 h after irradiation. They are early indicators for medical treatment in acute radiation injury. Their effective combination could achieve a more accurate dose assessment for large-scale wounded patients within 24 h post exposure. The effective combination of p53-related genes DDB2, AEN, TRIAP1, and TRAF4 is a novel biodosimetry for a large number of people exposed to acute nuclear accidents.
Background Hematopoietic stem cell transplantation (HSCT) is the main treatment for acute radiation sickness, especially after fatal radiation. The determination of HSCT for radiation patients is mainly based on radiation dose, hemogram and bone marrow injury severity. This study aims to explore a better biomarker of acute radiation injury from the perspective of systemic immune response. Methods C57BL/6J female mice were exposed to total body irradiation (TBI) and partial body irradiation (PBI). Changes in haptoglobin (Hp) level in plasma were shown at different doses and time points after the exposure and treatment with amifostine or bone marrow transplantation. Student’s t-test/two tailed test were used in two groups. To decide the Hp levels as a predictor of the radiation dose in TBI and PBI, multiple linear regression analysis were performed. The ability of biomarkers to identify two groups of different samples was determined by the receiver operating characteristic (ROC) curve. The results were expressed as mean ± standard deviation (SD). Significance was set at P value < 0.05, and P value < 0.01 was set as highly significant. Survival distribution was determined by log-rank test. Results In this study, we found that Hp was elevated dose-dependently in plasma in the early post-irradiation period and decreased on the second day, which can be used as a molecular indicator for early dose assessment. Moreover, we detected the second increase of Hp on the 3rd and 5th days after the lethal irradiation at 10 Gy, which was eliminated by amifostine, a radiation protection drug, while protected mice from death. Most importantly, bone marrow transplantation (BMT) on the 3rd and 5th day after 10 Gy radiation improved the 30-days survival rate, and effectively accelerated the regression of secondary increased Hp level. Conclusions Our study suggests that Hp can be used not only as an early molecule marker of radiation injury, but also as an important indicator of bone marrow transplantation therapy for radiation injury, bringing new scientific discoveries in the diagnosis and treatment of acute radiation injury from the perspective of systemic immunity.
Background Current dosimeters cannot cope with the two tasks of medical rescue in the early stage of nuclear accident, the accurate determination of radiation exposure and the identification of patients with fatal radiation injury. As radiation can cause alterations in serum components, it is feasible to develop biomarkers for radiation injury from serum. This study aims to investigate whether serum BPIFA2 could be used as a potential biomarker of predicting fatal radiation injury in the early stage after nuclear accident. Methods A rabbit anti-mouse BPIFA2 polyclonal antibody was prepared to detect the expression of BPIFA2. C57BL/6J female mice were exposed to total body radiation (TBI) at different dose and Partial body radiation (PBI) at lethal dose to detect the dynamic changes of BPIFA2 in serum at different time points after irradiation by Western blot assay. Results BPIFA2 in mice serum were significantly increased at 1–12 h post-irradiation at .5–10 Gy, and increased again significantly at 3 d after 10 Gy irradiation with associated with mortality closely. It also increased rapidly after PBI and was closely related to injury degree, regardless whether the salivary glands were irradiated. Conclusions The increase of serum BPIFA2 is a novel early biomarker not only for identifying radiation exposure, but also for fatal radiation injury playing a vital role in rational use of medical resources, and greater efficiency of medical treatment to minimize casualties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.