Micro-expression recognition has been an active research area in recent years, it plays an important role in psychology and public security. Due to the aspects of short duration and subtle movement, it is challenging to extract spatiotemporal features of micro-expressions. The existing methods only extract features in the three-dimensional orthogonal plane and fail to make full use of that information. To solve this problem, we propose a new Local Cubes Binary Patterns (LCBP) method for micro-expression recognition. LCBP is cascaded by the motion information LCBP direction , the amplitude information LCBP amplitudes , and the spatial information LCBP 3D to obtain the spatiotemporal features. The advantage of LCBP is its ability to preserve the spatiotemporal information and the low feature dimension. Furthermore, to increase the discrimination of features in micro-expression sequences, we apply a differential calculation energy map to find regions of interest (ROI) for getting a weighted energy map. The final micro-expression feature acquired by fusing the LCBP features and the weighted energy map are classified through the Support Vector Machine (SVM). We evaluate the proposed method on four published micro-expression databases including SMIC, CASME, CASME2, SAMM. Experimental results demonstrate that our proposed method achieves promising performance for micro-expression recognition. INDEX TERMS Micro-expression recognition, differential energy map, local cubes binary patterns, SVM.
Rainy, as an inevitable weather condition, will affect the acquired image. To solve this problem, a single image rain removal algorithm based on deep learning and symmetric transformation is proposed. Because of the important characteristics of wavelet transform, such as symmetry, orthogonality, flexibility and limited support, wavelet transform is used to remove rain from a single image. The image is denoised by using wavelet decomposition, threshold value and wavelet reconstruction in wavelet transform, and the rain drop image is transformed from RGB space to YUV (luma chroma) space by using deep learning to obtain the brightness component and color component of the image. the brightness component and residual component of the raindrop source image and the ideal recovered image without raindrop are extracted. The residual image and brightness component are overlapped again, the reconstructed image is restored to RGB space by YUV inverse transformation, and the final color raindrop free image is obtained. After training the network, the optimal parameters of the network are obtained, and finally the convolution neural network which can effectively remove the rain line is obtained. Experimental results show that compared with other algorithms, the proposed algorithm achieves the highest value in both peak signal-to-noise ratio (PSNR) and structural similarity, which shows that the image effect of the algorithm is better after rain removal.
As a spontaneous facial expression, a micro-expression can reveal the psychological responses of human beings. Thus, micro-expression recognition can be widely studied and applied for its potentiality in clinical diagnosis, psychological research, and security. However, micro-expression recognition is a formidable challenge due to the short-lived time frame and low-intensity of the facial actions. In this paper, a sparse spatiotemporal descriptor for micro-expression recognition is developed by using the Enhanced Local Cube Binary Pattern (Enhanced LCBP). The proposed Enhanced LCBP is composed of three complementary binary features containing Spatial Difference Local Cube Binary Patterns (Spatial Difference LCBP), Temporal Direction Local Cube Binary Patterns (Temporal Direction LCBP), and Temporal Gradient Local Cube Binary Patterns (Temporal Gradient LCBP). With the application of Enhanced LCBP, it would no longer be a problem to provide binary features with spatiotemporal domain complementarity to capture subtle facial changes. In addition, due to the redundant information existing among the division grids, which affects the ability of descriptors to distinguish micro-expressions, the Multi-Regional Joint Sparse Learning is designed to perform feature selection for the division grids, thus paying more attention to the critical local regions. Finally, the Multi-kernel Support Vector Machine (SVM) is employed to fuse the selected features for the final classification. The proposed method exhibits great advantage and achieves promising results on four spontaneous micro-expression datasets. Through further observation of parameter evaluation and confusion matrix, the sufficiency and effectiveness of the proposed method are proved.
Vehicle Re-Identification (Re-ID) aims to discover and match target vehicles in different cameras of road surveillance. The high similarity between vehicle appearances and the dramatic variations in viewpoints and illumination cause great challenges for vehicle Re-ID. Meanwhile, in safety supervision and intelligent traffic systems, one needs a quick efficient method of identifying target vehicles. In this paper, we propose a Multi-Attention Guided Feature Enhancement Network (MAFEN) to extract robust vehicle appearance features. Specifically, the Fusing Spatial-Channel information multi-receptive fields Feature Enhancement module (FSCFE) is first proposed to aggregate richer and more representative multi-receptive fields features at different receptive fields sizes. It also learned the spatial structure information and channel dependencies of the multi-receptive fields features and embedded them to enhance the feature. Then, we construct the Spatial Attention-Guided Adaptive Feature Erasure (SAAFE) module, which uses spatial attention to erase the most distinguishing features. The network’s attention is shifted to potentially salient features to strengthen the ability of the network to extract salient features. In addition, a multi-loss knowledge distillation (MLKD) method using MAFEN as a teacher network is designed to improve computational efficiency. It uses multiple loss functions to jointly supervise the student network. Experimental results on three public datasets demonstrate the merits of the proposed method over the state-of-the-art methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.