With the improvement of the current level of power grids, the requirements of the opening level of the vacuum switches are also increasing. Vacuum arc cathode spots provide steam and electrons and, to a certain extent, determine the opening capacity of the vacuum switch. In this paper, a vacuum arc cathode spot research platform based on the de‐mountable vacuum chamber is constructed. The characteristics of the vacuum arc cathode spots under the transverse magnetic field (TMF) contacts are assessed by a high‐speed charge coupled device. The experimental results show that the cathode spot diffusion process can be divided into three processes through cathode spot distribution, arc voltage and current: initial diffusion stage of cathode spots, unstable motion stage of cathode spots, and extinguishing stage. The motion mode of cathode spots during unstable motion stage can be divided into cathode spots group stagnation (CSGS) to multi‐cathode jet (MCJ) switch mode, cathode spots group motion (CSGM) to MCJ switch mode, CSGM mode, and MCJ mode. The effects of peak current and contact diameter on unstable motion mode were analysed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.