Stretchable conductors are the basic building blocks of advanced flexible electronic devices, such as flexible display, skin-like sensors, stretchable batteries, soft actuators and so forth. [1][2][3][4][5][6][7][8][9][10] They are used in a vast number of soft and stretchable devices developed in recent years, including biointerfacing electrodes, [11][12][13][14][15] transistors, [16][17][18] mechanical sensors, [19][20][21][22] energy devices [23][24][25][26] and many more. [27][28][29][30][31][32][33][34][35][36][37][38][39][40][41][42] To meet most application requirements, stretchable conductors need to remain conductive under tensile strain of more than 100%, and even more importantly, to show stable performance in terms of interfacial adhesion between conductive metal film and the supporting polymer substrate.[1] Current methods to achieve stretchable conductors generally fall into two categories. One involves a structural design strategy, where the conducting material is designed with specific structures/topographies including serpentines, [46][47][48][49][50][51][52] wrinkles, [53,54] meshes, [55][56][57][58] and microcracks. [59][60][61][62][63] The other strategy relies on intrinsic stretchability of Stretchable conductors are the basic units of advanced flexible electronic devices, such as skin-like sensors, stretchable batteries and soft actuators. Current fabrication strategies are mainly focused on the stretchability of the conductor with less emphasis on the huge mismatch of the conductive material and polymeric substrate, which results in stability issues during long-term use. Thermal-radiation-assisted metal encapsulation is reported to construct an interlocking layer between polydimethylsiloxane (PDMS) and gold by employing a semipolymerized PDMS substrate to encapsulate the gold clusters/atoms during thermal deposition. The stability of the stretchable conductor is significantly enhanced based on the interlocking effect of metal and polymer, with high interfacial adhesion (>2 MPa) and cyclic stability (>10 000 cycles). Also, the conductor exhibits superior properties such as high stretchability (>130%) and large active surface area (>5:1 effective surface area/geometrical area). It is noted that this method can be easily used to fabricate such a stretchable conductor in a wafer-scale format through a one-step process. As a proof of concept, both long-term implantation in an animal model to monitor intramuscular electric signals and on human skin for detection of biosignals are demonstrated. This design approach brings about a new perspective on the exploration of stretchable conductors for biomedical applications.
BackgroundSwallowing is a continuous process with substantive interdependencies among different muscles, and it plays a significant role in our daily life. The aim of this study was to propose a novel technique based on high-density surface electromyography (HD sEMG) for the evaluation of normal swallowing functions.MethodsA total of 96 electrodes were placed on the front neck to acquire myoelectric signals from 12 healthy subjects while they were performing different swallowing tasks. HD sEMG energy maps were constructed based on the root mean square values to visualize muscular activities during swallowing. The effects of different volumes, viscosities, and head postures on the normal swallowing process were systemically investigated by using the energy maps.ResultsThe results showed that the HD sEMG energy maps could provide detailed spatial and temporal properties of the muscle electrical activity, and visualize the muscle contractions that closely related to the swallowing function. The energy maps also showed that the swallowing time and effort was also explicitly affected by the volume and viscosity of the bolus. The concentration of the muscular activities shifted to the opposite side when the subjects turned their head to either side.ConclusionsThe proposed method could provide an alternative method to physiologically evaluate the dynamic characteristics of normal swallowing and had the advantage of providing a full picture of how different muscle activities cooperate in time and location. The findings from this study suggested that the HD sEMG technique might be a useful tool for fast screening and objective assessment of swallowing disorders or dysphagia.
Upper-limb amputation imposes significant burden on amputees thereby restricting them from fully exploring their environments during activities of daily living. The use of intelligent learning algorithm for electromyogram-pattern recognition (EMG-PR)-based control in upper-limb prostheses is considered as an important clinical option. Though the existing EMG-PR prostheses could discriminate multiple degrees of freedom (DOF) limb movements, their transition to clinically viable option is still being challenged by some confounding factors. Toward realizing a clinically viable multiple DOF prostheses, this paper first explored the principles and dynamics of the existing intelligently driven EMG-PR-based prostheses control scheme. Then, investigations on core issues including variation in muscle contraction force, electrode shift, and subject mobility affecting the existing EMG-PR prosthetic control scheme were reported. For instance, variation in muscle contraction force and subject mobility led to degradation in the performance of the EMG-PR controlled prostheses with approximately 17.00% and 8.98% error values, respectively, which are still challenging issues among others. Thus, this paper reports core issues and best practices with respect to intelligent EMG-PR controlled prosthesis, the major challenges in implementing adaptively robust control scheme and provides future research directions that may result in the clinical realization of intuitively dexterous multiple DOF EMG-PR-based prostheses in the near future.
Different substituents on stilbene-based oxime esters play an important role in the relationship between their structure and properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.