Recently, the discovery of room temperature magnetoelectricity in organic charge transfer complexes has reignited interest in the multiferroic field. The solution processed, large-area and low cost organic semiconductor materials offer new possibilities for the functional all organic multiferroic devices. Here we report the spin polarization of excitons and charge transfer states in organic charge transfer composites by using extended Su-Schrieffer-Heeger model including Coulomb interaction and spin-flip effect. With the consideration of spin polarization, we suggest a possible mechanism for the origin of excited ferromagnetism.
We construct a model to reveal the spin polarization or ferromagnetism observed in organic composite nw-P3HT/C60 with closed-shell structures. Different from the organic ferromagnets with open-shell structures, the ferromagnetism of nw-P3HT/C60 comes from the charge transfers from the polymer to the small molecules. The transferred electrons become spin polarized and they are coupled together through the holes in the polymer. Finally, a ferromagnetic order appears in the pure organic composite. The magnetic moment of the system is mainly provided by the spin polarized small molecules. The magnetization is dependent upon the density of the transferred charges, which is consistent to our experimental observations. Our investigation also shows that some new spin phenomena may appear in excited states for organic semiconductors which is absent in the ground states.
Based on a tight binding model combined with a nonadiabatic dynamics approach, we theoretically investigate the exciton intrachain transport in conjugated polymers with different interchain packing configurations. We construct two different interchain packing configurations, i.e. linear and exponential forms, and simulate the dynamical processes of the exciton transport in these systems. We find that, in both cases, there exists a distribution of driving force for exciton transport, which stems from the gradient of the exciton creation energy along the chains. This finding enriches the picture of exciton transport in polymers and provides a new idea to improve the exciton transport length in polymeric photovoltaic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.