The timing and nature of biotic recovery from the devastating end-Permian mass extinction (252 Ma) are much debated. New studies in South China suggest that complex marine ecosystems did not become re-established until the middle–late Anisian (Middle Triassic), much later than had been proposed by some. The recently discovered exceptionally preserved Luoping biota from the Anisian Stage of the Middle Triassic, Yunnan Province and southwest China shows this final stage of community assembly on the continental shelf. The fossil assemblage is a mixture of marine animals, including abundant lightly sclerotized arthropods, associated with fishes, marine reptiles, bivalves, gastropods, belemnoids, ammonoids, echinoderms, brachiopods, conodonts and foraminifers, as well as plants and rare arthropods from nearby land. In some ways, the Luoping biota rebuilt the framework of the pre-extinction latest Permian marine ecosystem, but it differed too in profound ways. New trophic levels were introduced, most notably among top predators in the form of the diverse marine reptiles that had no evident analogues in the Late Permian. The Luoping biota is one of the most diverse Triassic marine fossil Lagerstätten in the world, providing a new and early window on recovery and radiation of Triassic marine ecosystems some 10 Myr after the end-Permian mass extinction.
Although palaeontological evidence from exceptional biota demonstrates the existence of diverse marine communities in the Early Cambrian (approx. 540-520 Myr ago), little is known concerning the functioning of the marine ecosystem, especially its trophic structure and the full range of ecological niches colonized by the fauna. The presence of a diverse zooplankton in Early Cambrian oceans is still an open issue. Here we provide compelling evidence that chaetognaths, an important element of modern zooplankton, were present in the Early Cambrian Chengjiang biota with morphologies almost identical to Recent forms. New information obtained from the lowermost Cambrian of China added to previous studies provide convincing evidence that protoconodont-bearing animals also belonged to chaetognaths. Chaetognaths were probably widespread and diverse in the earliest Cambrian. The obvious raptorial function of their circumoral apparatuses (grasping spines) places them among the earliest active predator metazoans. Morphology, body ratios and distribution suggest that the ancestral chaetognaths were planktonic with possible ecological preferences for hyperbenthic niches close to the sea bottom. Our results point to the early introduction of prey-predator relationships into the pelagic realm, and to the increase of trophic complexity (three-level structure) during the Precambrian-Cambrian transition, thus laying the foundations of present-day marine food chains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.