A low-frequency vibration insensitive accelerometer test pendulum bench based on translation-tilt compensation for testing a high precise accelerometer has been proposed in order to suppress the effect of seismic noise. However, the seismic noise suppression could be affected by the high-frequency coupling due to possible nonlinearities and the cross-coupling due to the off-axis location of the accelerometers on the bench. In this paper, based on the basic vibration insensitive design and actual application requirement, the location effect of the accelerometer on the bench is firstly modeled and analyzed, and then the adjustment schemes combined with the center of percussion concept to suppress these coupling effects are presented. Finally, the analytical result and the adjustment scheme are verified by an experimental demonstration.
A high precision electrostatic accelerometer has widely been employed to measure gravity gradients and detect gravitational waves in space. The high-voltage levitation method is one of the solutions for testing electrostatic accelerometers on the ground, which aims at simultaneously detecting all six-degree-of-freedom movements of the electrostatic accelerometers engineering and flight prototypes. However, the noise performance in the high-voltage levitation test is mainly limited by seismic noise. The combined test of the accelerometer and vibration isolation platform is adopted to improve the detection precision of the high-voltage levitation method. In this paper, a high precision electrostatic accelerometer prototype is developed after designed appropriate mechanical parameters with a test mass weighing 300 g and with an estimated resolution of 2 × 10−12 m/s2/Hz1/2 from 0.01 to 0.4 Hz. Such a prototype is tested by the high-voltage levitation method, its measurement noise on the ground is mainly limited by the seismic noise, which is about 5 × 10−7 m/s2/Hz1/2 around 0.2 Hz and about 4 × 10−8 m/s2/Hz1/2 around 0.1 Hz. A vibration isolation pendulum bench based on the translation–tilt compensation principle is adopted for accelerometer prototype combined tests to suppress the seismic noise, which has a large bench area and the ability to adjust the tilt angle precisely. The measured accelerometer noise of the combined test with the translation–tilt compensation pendulum has reached 3 × 10−9 m/s2/Hz1/2 around 0.2 Hz, and it is about two orders of magnitude lower than the measurement noise on the ground. The combined test method provides technical guidance for further improving the noise level of ground test in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.