With rising urbanization, the presence of urban wildlife is becoming more common, increasing the need for wildlife‐friendly spaces in urban planning. Despite this, understanding is limited to how wildlife exploits urban environments and interacts with human populations, and this is vital to our ability to manage and conserve wildlife in urban habitats. Here, we investigate how two urban mammal species, the red fox (Vulpes vulpes) and the European badger (Meles meles), exploit urban environments. Using intensive camera trap surveys, we assessed how habitat and human disturbance influenced the spatiotemporal activity of these species across south‐west London. Firstly, we found elevated activity levels of both species at boundaries and within built‐up areas, suggesting movement paths follow anthropogenic features. However, badgers were most active in woodland, indicating the importance of high cover habitats suitable for setts and foraging. Secondly, we found badger activity levels were negatively affected by human activity, whilst foxes were unaffected. Further investigation suggested foxes may adapt their activity patterns to avoid human disturbance, with badger activity patterns less plastic. Whilst the results of this study are useful for both the conservation and management of urban wildlife populations, these results also show potential factors which either facilitate or limit wildlife from fully exploiting urban environments.
Purpose: To conduct a multi-tissue investigation on the penetration and distribution of topical atropine in myopia treatment, and determine if atropine is detectable in the untreated contralateral eye after uniocular instillation. Methods: Nine mature New Zealand white rabbits were evenly divided into three groups. Each group was killed at 5, 24 and 72 hr, respectively, following uniocular instillation of 0.05 ml of 1% atropine. Tissues were sampled after enucleation: conjunctiva, sclera, cornea, iris, ciliary body, lens, retina, aqueous, and vitreous humors. The assay for atropine was performed using liquid chromatography-mass spectrometry (LC-MS), and molecular tissue distribution was illustrated using matrix-assisted laser desorption ionization-imaging mass spectrometry (MALDI-IMS) via an independent experiment on murine eyes. Results: At 5 hr, the highest (mean AE SEM) concentration of atropine was detected in the conjunctiva (19.05 AE 5.57 ng/mg, p < 0.05) with a concentration gradient established anteriorly to posteriorly, as supported by MALDI-IMS. At 24 hr, preferential binding of atropine to posterior ocular tissues occurred, demonstrating a reversal of the initial concentration gradient. Atropine has good ocular bioavailability with concentrations of two magnitudes higher than its binding affinity in most tissues at 3 days. Crossing-over of atropine to the untreated eye occurred within 5 hr post-administration. Conclusion: Both transcorneal and transconjunctival-scleral routes are key in atropine absorption. Posterior ocular tissues could be important sites of action by atropine in myopic reduction. In uniocular atropine trials, cross-over effects on the placebo eye should be adjusted to enhance results reliability. Combining the use of LC-MS and MALDI-IMS can be a viable approach in the study of the ocular pharmacokinetics of atropine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.