Studying typhoon risk perception and its influencing factors help reveal potential risk factors from the perspective of the public and provide a basis for decision-making for reducing the risk of typhoon disasters. The purpose of this study is to assess the risk perception and related factors of Macao residents in China. Information was collected from 983 participants using a structured questionnaire with an effective utilization rate of 94.2%. Descriptive statistics, univariate analysis and correlation analysis were used to analyze the data. The results show that, on the one hand, there are significant differences in risk perception on the factors included: (1) age, education and other demographic characteristics; (2) health status, occupation, length of stay, residence area, residence floor, family organization structure and individuals monthly income and other personal or family conditions; (3) channels and quantity of typhoon information acquisition; (4) degree of mastery of relevant risk aversion knowledge. On the other hand, some factors still have a moderate or high level of correlation with risk perception: (1) The older the respondent, the lower the education level, the lower the income, the lower the risk perception of property damage, health impact and life threat. (2) The more children or elderly people in the family, the higher the risk perception of respondents. (3) The more risk knowledge, the lower the risk perception. (4) The more channels for obtaining information, the lower the fear level and the overall impact of risk perception. (5) The stronger the risk perception, the more positive disaster response behaviors would be taken by the public. In addition, the more information acquisition channels and the less risk knowledge respondents have, the greater the risk perception of the overall impact and the fear of the typhoon; the fewer information access channels and less risk knowledge respondents have, the greater the risk perceptions of property damage, health effects and life threats.
Earthquakes are one type of natural disaster that causes serious economic loss, deaths, and homelessness, and providing shelters is vital to evacuees who have been affected by an earthquake. Constructing shelters with reasonable capacity in the right locations and allocating evacuees to them in a reasonable time period is one disaster management method. This study proposes a multi-objective hierarchical model with three stages, i.e., an immediate shelter (IS) stage, a short-term shelter (STS) stage, and a long-term shelter (LTS) stage. According to the requirements of evacuees of IS, STS, and LTS, the objective of both the IS and STS stages is to minimize total evacuation time and the objectives of the LTS are to minimize total evacuation time and to minimize total shelter area. A modified particle swarm optimization (MPSO) algorithm is used to solve the IS and STS stages and an interleaved modified particle swarm optimization algorithm and genetic algorithm (MPSO-GA) is applied to solve the LTS stage. Taking Chaoyang District, Beijing, China as a case study, the results generated using the model present the government with a set of options. Thus, according to the preferences of the government, the determination can be made regarding where to construct ISs, STSs, and LTSs, and how to allocate the evacuees to them.
Typhoon disaster represent one of the most prominent threats to public safety in the Macao Special Administrative Region (SAR) of China and can cause severe economic losses and casualties. Prior to the landing of typhoons, affected people should be evacuated to shelters as soon as possible; this is crucial to prevent injuries and deaths. Various models aim to solve this problem, but the characteristics of disasters and evacuees are often overlooked. This study proposes a model based on the influence of a typhoon and its impact on evacuees. The model’s objective is to minimize the total evacuation distance, taking into account the distance constraint. The model is solved using the spatial analysis tools of Geographic Information Systems (GIS). It is then applied in Macao to solve the evacuation process for Typhoon Mangkhut 2018. The result is an evacuee allocation plan that can help the government organize evacuation efficiently. Furthermore, the number of evacuees allocated to shelters is compared with shelter capacities, which can inform government shelter construction in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.