Abstract-This paper presents an effective Polar Format Algorithm (PFA) for spotlight bistatic synthetic aperture radar (SAR) with arbitrary geometry configuration. Nonuniform interpolation and resampling are adopted when converting raw data from polar coordinates to Cartesian coordinates according to the characteristics of raw data samples in spatial frequency space. Thus, the proposed algorithm avoids both rotation transformation and the calculation of azimuth compensation factor and thereby avoids the corresponding approximate error appeared in the conventional PFA. Meanwhile, the proposed algorithm inherits the character of decomposing 2-D interpolation to two 1-D interpolations from conventional PFA algorithm applied in monostatic SAR imaging.Therefore, the processing flow, computation efficiency and performance of the proposed algorithm are the same as those of conventional PFA for monostatic spotlight SAR. Point target simulations are provided to validate the proposed algorithm.
Abstract-This paper presents an Extended Exact Transfer Function (EETF) algorithm for Bistatic Synthetic Aperture Radar (BiSAR) imaging of a Translational Invariant (TI) case. This algorithm adopts directly the 2D transfer function of monostatic SAR (MoSAR), instead of deriving a new one, by converting the BiSAR into an equivalent MoSAR. A new azimuth phase compensation function is constructed through exploiting this equivalency. Geometry distortion correction for BiSAR imaging result is considered in the proposed algorithm. In addition, the applying condition of the algorithm is also discussed. One desirable property of the proposed algorithm is that the computing flow and efficiency are the same as ETF algorithm for MoSAR. The effectiveness is validated by point target simulations with Tandem and forward-looking configuration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.