A novel blend membrane with temperature-and pH-responsive properties was prepared by the physical blending of poly(vinylidene fluoride) (PVDF) bulk material, poly(N-isopropylacrylamide) (PNIPAAm) microgels and poly(acrylic acid) (PAA) microgels with a simple and practical procedure, which is suitable for industrial scale production. The composition and structure of the blend membrane were investigated by Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and fieldemission scanning electron microscope (FESEM). The results indicated that the incorporation of PAA and PNIPAAm microgels improved the pore size, porosity and hydrophilicity of the blended membrane, leading to a higher water flux and remarkable antifouling property. In particular, the blend membrane exhibited temperature-and pH-sensitive characteristics. The dual responsive feature makes it easy to control the blend membrane's rejection properties as well as the water flux and helps the membrane retain preferable mass transfer and separation property when responding to one of the investigated stimuli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.