This paper reports the recent development of a full-scale particle-in-cell (PIC) simulation package highlighting an efficient electro-statics (ES)-PIC implementation for spacecraft charging problems. Numerical simulations are crucial in studying plasma flows because analytical solutions are rare, and experiments are expensive. There are many types of plasma flow that need various numerical methods for efficient and accurate simulations; as such, how to implement and organize those different methods into one comprehensive simulation package is challenging. This work adopted several modern software design patterns and developed a versatile package that includes various PIC schemes. This package has an open architecture, clean interfaces with both serial and parallel simulation capabilities. Two benchmark test cases are included to demonstrate the capabilities of this package. Then two plasma flows around a positively charged probe are simulated, and the results are discussed. The simulation results are consistent with past simulation results, and new insights are obtained. This work can lead to the development and organization of more sophisticated plasma simulation solvers in the future.
This paper presents a model for highly dilute microplasma jet flows expanding into a vacuum from a round exit, with given number density, bulk velocity, temperature, and potential at the exit. The Debye length at the exit is assumed to be large, the quasi-neutral condition is adopted to treat charges, and the potential field is computed with the Boltzmann relation. At farfield, the exit degenerates as a point source, and simplified analytical formulas for the density, velocity, temperatures, potential, and electric field components are obtained. From the crucial centerline properties, exact but more compact solutions are further developed. The treatment is based on the gas kinetic theory, and the results are analytical and generic. The results include rich physics and offer insights into better understanding of many existing models in the literature, for example, the cosine law plume model shall be used with caution. The current results can be widely applicable to estimate the whole flow and potential fields, with reduced simulation and measurement costs. Farfield property estimations can be performed without numerical simulations and measurements. Based on these results from this work, more advanced models may be further developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.