Huntington’s disease (HD) is a neurodegenerative disease. MicroRNAs (miRNAs) are small non-coding RNAs that mediate post-transcriptional regulation of target genes. Although miRNAs are extensively edited in human brains, the editome of miRNAs in brains of HD patients is largely unknown. By analyzing the small RNA sequencing profiles of brain tissues of 28 HD patients and 83 normal controls, 1182 miRNA editing sites with significant editing levels were identified. In addition to 27 A-to-I editing sites, we identified 3 conserved C-to-U editing sites in miRNAs of HD patients. 30 SNPs in the miRNAs of HD patients were also identified. Furthermore, 129 miRNA editing events demonstrated significantly different editing levels in prefrontal cortex samples of HD patients (HD-PC) when compared to those of healthy controls. We found that hsa-mir-10b-5p was edited to have an additional cytosine at 5’-end in HD-PC, and the edited hsa-mir-10b repressed GTPBP10 that was often downregulated in HD. The down-regulation of GTPBP10 might contribute to the progression of HD by causing gradual loss of function of mitochondrial. These results provide the first endeavor to characterize the miRNA editing events in HD and their potential functions.
MicroRNAs (miRNAs) are extensively edited in human brains. However, the functional relevance of the miRNA editome is largely unknown in Parkinson’s disease (PD). By analyzing small RNA sequencing profiles of brain tissues of 43 PD patients and 88 normal controls, we found that the editing levels of five A-to-I and two C-to-U editing sites are significantly correlated with the ages of normal controls, which is disrupted in PD patients. We totally identified 362 miRNA editing sites with significantly different editing levels in prefrontal cortices of PD patients (PD-PC) compared to results of normal controls. We experimentally validated that A-to-I edited miR-497-5p, with significantly higher expression levels in PD-PC compared to normal controls, directly represses OPA1 and VAPB. Furthermore, overexpression of A-to-I edited miR-497-5p downregulates OPA1 and VAPB in two cell lines, and inhibits proliferation of glioma cells. These results suggest that the hyperediting of miR-497-5p in PD contributes to enhanced progressive neurodegeneration of PD patients. Our results provide new insights into the mechanistic understanding, novel diagnostics, and therapeutic clues of PD.
Leukemia is an aberrant hyper-proliferation of immature blood cells that do not form solid tumors. The transcriptomes of microRNAs (miRNAs) of leukemia have been intensively explored. However, miRNA editing of leukemia has not been extensively studied. To identify miRNA editing patterns and explore their functional relevance in leukemia, we analyzed 200 small RNA sequencing profiles of three subtypes of leukemia and identified hundreds of miRNA editing sites in three subtypes of leukemia. Then, we compared the editing levels of identified miRNA editing sites in leukemia and normal controls. Many miRNAs were differential edited in different subtypes of leukemia. We also found the editing levels of 3′-A editing sites of hsa-mir-21-5p and hsa-mir-155-5p decreased in chronic lymphocytic leukemia patients with radiation treatments. By integrating PAR-CLIP sequencing profiles, we predicted the targets of original and edited miRNAs. One of the edited miRNA, hsa-let-7b_5c, with an additional cytosine at 5′ end of hsa-let-7b-5p, potentially targeted VBP1 and CTDSP1. CTDSP1 was significantly downregulated in T-ALL compared to normal controls, which might be originated from the hyperediting of hsa-let-7b-5p in T-ALL. Our study provides a comprehensive view of miRNA editing in three different subtypes of leukemia.
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder whose pathogenesis is still unclear. MicroRNAs (miRNAs) are a kind of endogenous small non-coding RNAs that play important roles in the post-transcriptional regulation of genes. Recent researches show that miRNAs are edited in multiple ways especially in central nervous systems. A-to-I editing of RNA catalyzed by Adenosine deaminases acting on RNA (ADARs) happens intensively in brain and is also noticed in other organs and tissues. Although miRNAs are widely edited in human brain, miRNA editing in ASD is still largely unexplored. In order to reveal the editing events of miRNAs in ASD, we analyzed 131 miRNA-seq samples from 8 different brain regions of ASD patients and normal controls. We identified 834 editing sites with significant editing levels, of which 70 sites showed significantly different editing levels in the superior frontal gyrus samples of ASD patients (ASD-SFG) when compared with those of control samples. The editing level of an A-to-I editing site in hsa-mir-376a-1 (hsa-mir-376a-1_9_A_g) in ASD-SFG is higher than that of normal controls, and the difference is exaggerated in individuals under 10 years. The increased expression of ADAR1 is consistent with the increased editing level of hsa-mir-376a-1_9_A_g in ASD-SFG samples compared to normal SFG samples. Furthermore, we verify that A-to-I edited hsa-mir-376a-5p directly represses GPR85 and NAPB, which may contribute to the abnormal neuronal development of ASD patients. These results provide new insights into the mechanism of ASD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.