Through adding two substituent phenyl groups on distyrylbenzene, we have obtained the cross stacking of 2,5-diphenyl-1,4-distyrylbenzene with two trans double bonds (trans-DPDSB) in crystalline state. In such a cross-stacking mode, the solid-state emission exhibits high-intensity, having characteristics similar to its single molecule. The organic light-emiiting diodes (OLEDs) with attractive performance have been achieved using trans-DPDSB as a light-emitting layer, and the amplified spontaneous emission of the needlelike crystals has been observed.
We have realized a small-molecule organic light-emitting diode where the intrinsic emitter layer is sandwiched by n- and p-doped transport layers with appropriate blocking layers. The diodes based on this pin concept have exponential forward characteristics up to comparatively high current densities. The diodes reach high brightness at very low operating voltage: for instance, 1000 cd/m2 at a voltage of 2.9 V. Despite the highly doped transport layers, the devices reach very high efficiency for the given emitter system up to high brightness.
The fabrication of block copolymer (BCP) vesicles (polymersomes) exhibiting synchronized covalent crosslinking and bilayer permeabilization remains a considerable challenge as crosslinking typically leads to compromised membrane permeability. Herein it is demonstrated how to solve this dilemma by employing a stimuli-triggered crosslinking strategy with amphiphilic BCPs containing photolabile carbamate-caged primary amines. Upon self-assembling into polymersomes, light-triggered self-immolative decaging reactions release primary amine moieties and extensive amidation reactions then occur due to suppressed amine pKa within hydrophobic milieu. This leads to serendipitous vesicle crosslinking and the process is associated with bilayer hydrophobicity-to-hydrophilicity transition and membrane permeabilization.
The rational design of theranostic nanoparticles exhibiting synergistic turn-on of therapeutic potency and enhanced diagnostic imaging in response to tumor milieu is critical for efficient personalized cancer chemotherapy. We herein fabricate self-reporting theranostic drug nanocarriers based on hyperbranched polyprodrug amphiphiles (hPAs) consisting of hyperbranched cores conjugated with reduction-activatable camptothecin prodrugs and magnetic resonance (MR) imaging contrast agent (Gd complex), and hydrophilic coronas functionalized with guanidine residues. Upon cellular internalization, reductive milieu-actuated release of anticancer drug in the active form, activation of therapeutic efficacy (>70-fold enhancement in cytotoxicity), and turn-on of MR imaging (∼9.6-fold increase in T1 relaxivity) were simultaneously achieved in the simulated cytosol milieu. In addition, guanidine-decorated hPAs exhibited extended blood circulation with a half-life up to ∼9.8 h and excellent tumor cell penetration potency. The hyperbranched chain topology thus provides a novel theranostic polyprodrug platform for synergistic imaging/chemotherapy and enhanced tumor uptake.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.