Maize ( Zea mays L.) is a food crop sensitive to low temperatures. As one of the abiotic stress hazards, low temperatures seriously affect the yield of maize. However, the genetic basis of low-temperature adaptation in maize is still poorly understood. In this study, maize S-adenosylmethionine decarboxylase (SAMDC ) was localized to the nucleus. We used Agrobacterium -mediated transformation technology to introduce the SAMDC gene into an excellent maize inbred line variety GSH9901 and produced a cold-tolerant transgenic maize line. After three years of single-field experiments, the contents of polyamines (PAs), proline (Pro), malondialdehyde (MDA), antioxidant enzymes and ascorbate peroxidases (APXs) in the leaves of the transgenic maize plants overexpressing the SAMDC gene significantly increased, and the expression of elevated CBF and cold-responsive genes effectively increased. The agronomic traits of the maize overexpressing the SAMDC gene changed, and the yield traits significantly improved. However, no significant changes were found in plant height, ear length, and shaft thickness. Therefore, SAMDC enzymes can effectively improve the cold tolerance of maize.
Maize (Zea mays L.) is a food crop sensitive to low temperatures. Low temperature, as one of the abiotic stress hazards, seriously affects the yield of corn. However, the genetic basis of low-temperature adaptation in maize is still poorly understood. In this study, maize S-adenosylmethionine decarboxylase (SAMDC) was localized on the nucleus. We introduced the SAMDC gene into the excellent maize inbred line variety GSH9901 and used Agrobacterium-mediated transformation to produce cold-tolerant transgenic maize lines. After a 3-year single-location field trial, the contents of polyamine (PA), proline, malondialdehyde, an antioxidant enzyme, and APX in the leaves of transgenic maize plants overexpressing SAMDC were significantly increased, and the introduction of the SAMDC gene was significantly increased the expression of CBFs and cold-related genes.The agronomic traits of overexpression maize changed and the yield traits were significantly improved, but no significant changes were found in plant height, ear length, and shaft thickness.Thus, engineering the SAMDC enzyme is an effective strategy to improve the cold tolerance and value of maize.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.