In a dual-axis rotational inertial navigation system (RINS), there are two kinds of installation errors, nonorthogonal installation errors of inertial sensors, and installation errors between the inertial measurement unit (IMU) and rotation axes. Traditionally, these two errors are not considered simultaneously. Thus, they are calibrated separately by different estimation algorithms and rotation schemes. In this paper, a system-level self-calibration method for installation errors of a dual-axis RINS is proposed. Based on the Kalman filter, the measurement model is reestablished to ensure that all installation errors can be estimated together. First, the relationship between the initial attitude and subsequent attitude of IMU during rotation is used as a constraint to estimate nonorthogonal installation errors of accelerometers, and installation errors between the IMU and rotation axes. Then, the angular rate of the rotation mechanism is used as a reference to estimate nonorthogonal installation errors of the gyros. The rotation scheme of the IMU is designed to make all installation errors observable, and the observability of the system is analyzed based on the piecewise constant system method. Simulation and laboratory experiment results suggest that installation errors can be effectively estimated by the proposed method, thereby avoiding the complex separating process.
Determination of calibration parameters is essential for the fusion performance of an inertial measurement unit (IMU) and odometer integrated navigation system. Traditional calibration methods are commonly based on the filter frame, which limits the improvement of the calibration accuracy. This paper proposes a graph-optimisation-based self-calibration method for the IMU/odometer using preintegration theory. Different from existing preintegrations, the complete IMU/odometer preintegration model is derived, which takes into consideration the effects of the scale factor of the odometer, and misalignments in the attitude and position between the IMU and odometer. Then the calibration is implemented by the graph-optimisation method. The KITTI dataset and field experimental tests are carried out to evaluate the effectiveness of the proposed method. The results illustrate that the proposed method outperforms the filter-based calibration method. Meanwhile, the performance of the proposed IMU/odometer preintegration model is optimal compared with the traditional preintegration models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.