Understanding of the roles of oxygen species at reducible metal oxide surfaces under real oxidation conditions is important to improve the performance of these catalysts. The present study addresses this issue by applying a combination of operando diffuse reflectance infrared Fourier transform spectroscopy with a temperature-programmed reaction cell and mass spectrometry to explore the behaviors of oxygen species during H2 oxidation in a temperature range of 25–400 °C at β-MnO2 surfaces. It is revealed that O2 is dissociated simultaneously into terminal-type oxygen (M2+-O2–) and bridge-type oxygen (M+-O2–-M+) via adsorption at the Mn cation with an oxygen vacancy. O2 adsorption is inhibited if the Mn cation is covered with terminal-adsorbed species (O, OH, or H2O). In a temperature range of 110–150 °C, OH at Mn cation becomes reactive and its reaction product (H2O) can desorb from the Mn cation, resulting in the formation of bare Mn cation for O2 adsorption and dissociation. At a temperature above 150 °C, OH is reactive enough to leave bare Mn cation for O2 adsorption and dissociation. These results suggest that bare metal cations with oxygen vacancies are important to improve the performance of reducible metal oxide catalysts.
Cu-doped manganese oxide (Cu–Mn2O4) prepared using aerosol decomposition was used as a CO oxidation catalyst. Cu was successfully doped into Mn2O4 due to their nitrate precursors having closed thermal decomposition properties, which ensured the atomic ratio of Cu/(Cu + Mn) in Cu–Mn2O4 close to that in their nitrate precursors. The 0.5Cu–Mn2O4 catalyst of 0.48 Cu/(Cu + Mn) atomic ratio had the best CO oxidation performance, with T50 and T90 as low as 48 and 69 °C, respectively. The 0.5Cu–Mn2O4 catalyst also had (1) a hollow sphere morphology, where the sphere wall was composed of a large number of nanospheres (about 10 nm), (2) the largest specific surface area and defects on the interfacing of the nanospheres, and (3) the highest Mn3+, Cu+, and Oads ratios, which facilitated oxygen vacancy formation, CO adsorption, and CO oxidation, respectively, yielding a synergetic effect on CO oxidation. DRIFTS-MS analysis results showed that terminal-type oxygen (M=O) and bridge-type oxygen (M-O-M) on 0.5Cu–Mn2O4 were reactive at a low temperature, resulting in-good low-temperature CO oxidation performance. Water could adsorb on 0.5Cu–Mn2O4 and inhibited M=O and M-O-M reaction with CO. Water could not inhibit O2 decomposition to M=O and M-O-M. The 0.5Cu–Mn2O4 catalyst had excellent water resistance at 150 °C, at which the influence of water (up to 5%) on CO oxidation could be completely eliminated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.