Perovskite-related materials with various dimensionalities have attracted sustained attention owing to their extraordinary electronic and optoelectronic properties, but it is still challenging in the synthesis of compounds with desired compositions and structures. Herein, a two-dimensional (2D) CsPb 2 I 5 perovskite has been synthesized by the conversion of CsPbI 3 at high-pressure and high-temperature (high P−T) conditions, which is quenchable at ambient conditions. In situ synchrotron X-ray diffraction shows that high-pressure monoclinic CsPbI 3 converts into tetragonal CsPb 2 I 5 and cubic CsI at 8.7 GPa upon heating from 644 to 666 K. Keeping the tetragonal structure stable, CsPb 2 I 5 exhibits tunable optical properties with the bandgap changing from ∼2.4 eV at ambient pressure to ∼1.4 eV at 36.9 GPa. Further experiments demonstrate similar structural evolution in the typical three-dimensional CsPbBr 3 perovskite into 2D CsPb 2 Br 5 at high P−T conditions, indicating that the conversion of CsPbX 3 (X = Br and I) into CsPb 2 X 5 is ubiquitous.
All-inorganic cesium lead halide perovskite quantum dots have recently received much attention as promising optoelectronic materials with great luminescent properties and bright application prospect in lighting, lasing, and photodetection. Although notable progress has been achieved in lighting applications based on such media, the performance could still be improved. Here, we demonstrate that the light emission from the perovskite QDs that possess high intrinsic luminous efficiency can be greatly enhanced by using metallic thin films, a technique that was usually considered only useful for improving the emission of materials with low intrinsic quantum efficiency. Eleven-fold maximal PL enhancement is observed with respect to the emission of perovskite QDs on the bare dielectric substrate. We explore this remarkable enhancement of the light emission originating from the joint effects of enhancing the incident photonic absorption of QDs at the excitation wavelength by means of the zero-order optical asymmetric Fabry–Perot-like thin film interference and increasing the radiative rate and quantum efficiency at the emission wavelength mediated by surface plasmon polaritons. We believe that our approach is also potentially valuable for the enhancement of light emission of other fluorescent media with high intrinsic quantum efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.