One of the main causes for excessive deformation within a tunnel is due to the instability of the soil or soft rock ahead of the excavation face. Fiberglass bolts have been shown to be a useful advance reinforcement method for the excavation face. In this paper, an improved ADECO-RS (Analysis of controlled deformation in rock and soils) method had been proposed for soft rock mountain tunnels, in terms of the partial (mainly the upper bench) excavation face reinforcement and also for the bench excavation method. Strain gauges were used to test the micro-strain in the fiberglass bolt to investigate how the axial force of the fiberglass bolt varied during the tunnel excavation. In addition, combined with the field tunnel deformation monitoring data, the relationship between the reinforcement parameters of the fiberglass bolts and the tunnel construction phase were discussed. The research results show that: (1) The stress state of the anchor rod is related to the reinforcement length of the anchor rod; (2) Excavation within the lap area of the fiberglass bolt leads to an increase in the axial force of the bolt, while excavation outside the lap area of the fiberglass bolt has no effect on the anchor; (3) Reducing the reinforcement area of rock mass will affect the stability of the excavation. To ensure the stability of the excavation face, the initial support construction loop should be completed as soon as possible; (4) In a future project with similar conditions, the recommended lap length of the fiberglass bolt could be 3 m utilizing the fiberglass bolt grouting face reinforcement method.
One of the main causes for excessive deformation within a tunnel is due to the instability of the soil or soft rock ahead of the excavation face. Fiberglass bolts have been shown to be a useful advance reinforcement method for the excavation face. In this paper, an improved ADECO-RS (Analysis of controlled deformation in rock and soils) method have been proposed for soft rock mountain tunnels, in terms of the partial (mainly the upper bench) excavation face reinforcement and also for the bench excavation method. Strain gauges were used to test the micro-strain in the fiberglass bolt to investigate how the axial force of the fiberglass bolt varied during the tunnel excavation. In addition, combined with the field tunnel deformation monitoring data, the relationship between the reinforcement parameters of the fiberglass bolts and the tunnel construction phase has been discussed. The conclusions of this study are: (1) The redistribution of the stress after the excavation led to an increase in the stresses of the surrounding rock near the excavation face, and there was a significant stress increase in the fiberglass bolt; (2) The excavation during the lap area of the fiberglass bolt led to an increase in the axial force in the bolt, however, the excavation outside the lap area of the fiberglass bolt didn’t show any influence on the bolt; (3) The deformation of the tunnel met the construction specification by ensuring the stability of the excavation face and closing the loop of each initial support construction as soon as possible; (4) In a future project with similar conditions, the recommended lap length of the fiberglass bolt was 3 m utilizing the fiberglass bolt grouting face reinforcement method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.