Common abnormalities within the schizophrenia spectrum may be essential for the pathogenesis of schizophrenia, but additional pathological changes may be required for the development of full-blown schizophrenia. Clarifying the neurobiological similarities and differences between established schizophrenia and a milder form of schizophrenia spectrum disorder would potentially discriminate the pathophysiological mechanisms underlying the core features of the schizophrenia spectrum from those associated with overt psychosis. High-resolution MRIs were acquired from 25 patients with schizotypal disorder, 53 patients with schizophrenia and 59 healthy volunteers matched for age, gender, handedness and parental education. Volumetric measurements of the medial temporal structures and the prefrontal cortex subcomponents were performed using consecutive 1-mm thick coronal slices. Parcellation of the prefrontal cortex into subcomponents was performed according to the intrinsic anatomical landmarks of the frontal sulci/gyri. Compared with the controls, the bilateral volumes of the amygdala and the hippocampus were reduced comparably in the schizotypal and schizophrenia patients. The parahippocampal gyrus volume did not differ significantly between diagnostic groups. Total prefrontal grey matter volumes were smaller bilaterally in the schizophrenia patients than in the controls and the schizotypal patients, whereas the schizotypal patients had larger prefrontal grey matter than the controls in the right hemisphere. In the schizophrenia patients, grey matter volumes of the bilateral superior frontal gyrus, left middle frontal gyrus, bilateral inferior frontal gyrus and bilateral straight gyrus were smaller than those in the controls. The schizophrenia patients also had reduced grey matter volumes in the right superior frontal gyrus, bilateral middle frontal gyrus and right inferior frontal gyrus relative to the schizotypal patients. Compared with the controls, the schizotypal patients had larger volumes of the bilateral middle frontal gyrus and smaller volumes of the right straight gyrus. There were no significant between-group differences in volumes of the ventral medial prefrontal cortex or the orbitofrontal cortex. These findings suggest that volume reductions in the amygdala and hippocampus are the common morphological substrates for the schizophrenia spectrum, which presumably represent the vulnerability. Additional widespread involvement of the prefrontal cortex in schizophrenia may lead to the loss of inhibitory control in other brain regions and suggests (although it is not specifically be related to) its critical role in the manifestation of overt psychosis.
BackgroundReprogrammed energy metabolism as an emerging hallmark of cancer has recently drawn special attention since it facilitate cell growth and proliferation. Recently, long noncoding RNAs (lncRNAs) have been served as key regulators implicated in tumor development and progression by promoting proliferation, invasion and metastasis. However, the associations of lncRNAs with cellular energy metabolism in lung cancer (LC) need to be clarified.MethodsHere, we conducted bioinformatics analysis and found insulin-like growth factor binding protein 4–1 (IGFBP4–1) as a new candidate lncRNA located in the upstream region of IGFBP4 gene. The expression levels of lnc-IGFBP4–1, mRNA levels of IGFBP4 in 159 paired lung cancer samples and adjacent, histological normal tissues by qRT-PCR. Over-expression and RNA interference (RNAi) approaches were adopted to investigate the biological functions of lnc-IGFBP4–1. The intracellular ATP level was measured using the Cell Titer-Glo Luminescent Cell Viability Assay kit, and changes in metabolic enzymes were examined in cancer cells and normal pulmonary epithelial cells with qRT-PCR.ResultsOur results showed that lnc-IGFBP4–1 was significantly up-regulated in LC tissues compared with corresponding non-tumor tissues (P < 0.01), and its expression level was significantly correlated with TNM stage (P < 0.01) and lymph node metastasis (P < 0.05). Further investigation showed that overexpression of lnc-IGFBP4–1 significantly promoted LC cell proliferation in vitro and in vivo, while downregulation of endogenous lnc-IGFBP4–1 could inhibited cell proliferation and induce apoptosis. Moreover, we found lnc-IGFBP4–1 could influences ATP production levels and expression of enzymes including HK2, PDK1 and LDHA, in addition, decline in both ATP production and these enzymes in response to 2-DG and 2-DG-combined Rho123, respectively, was observed in lnc-IGFBP4–1-overespressing LC cells, indicative of an enhanced aerobic glycolysis rate. Finally, lnc-IGFBP4–1 was observed to negatively correlate with gene IGFBP4, and lower expression level of IGFPB4 was found after lnc-IGFBP4–1-overexpression was transfected into PC9 cells, higher expression level of IGFPB4 was also found after lnc-IGFBP4–1-downregulation was transfected into GLC-82 cells, which indicates that IGFBP4 may exert its targeting function regulated by lnc-IGFBP4–1.ConclusionsTaken together, these findings provide the first evidence that lnc-IGFBP4–1 is significantly up-regulated in LC tissues and plays a positive role in cell proliferation and metastasis through possible mechanism of reprogramming tumor cell energy metabolism, which suggests that lnc-IGFBP4–1 may be a promising biomarker in LC development and progression and as a potential therapeutic target for LC intervention.Electronic supplementary materialThe online version of this article (10.1186/s12943-017-0722-8) contains supplementary material, which is available to authorized users.
The innate hypoxic microenvironment of most solid tumors has am ajor influence on tumor growth, invasiveness, and distant metastasis.Here,ahypoxia-activated self-immolative prodrug of paclitaxel (PTX 2-Azo) was synthesized and encapsulated by ap eptide copolymer decorated with the photosensitizer chlorin e6 (Ce6) to prepare light-boosted PTX nanoparticle (Ce6/PTX 2-Azo NP). In this nanoparticle, PTX 2-Azo prevents premature drug leakage and realizes specific release in hypoxic tumor microenvironment and the photosensitizer Ce6 not only efficiently generates singlet oxygen under light irradiation but also acts as ap ositive amplifier to promote the release of PTX. The combination of photodynamic therapy(PDT) and chemotherapyr esults in excellent antitumor efficacy,d emonstrating the great potential for synergistic cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.