O-GlcNAcylation is a highly dynamic, reversible and atypical glycosylation that regulates the activity, biological function, stability, sublocation and interaction of target proteins. O-GlcNAcylation receives and coordinates different signal inputs as an intracellular integrator similar to the nutrient sensor and stress receptor, which target multiple substrates with spatio-temporal analysis specifically to maintain cellular homeostasis and normal physiological functions. Our review gives a brief description of O-GlcNAcylation and its only two processing enzymes and HBP flux, which will help to better understand its physiological characteristics of sensing nutrition and environmental cues. This nutritional and stress-sensitive properties of O-GlcNAcylation allow it to participate in the precise regulation of skeletal muscle metabolism. This review discusses the mechanism of O-GlcNAcylation to alleviate metabolic disorders and the controversy about the insulin resistance of skeletal muscle. The level of global O-GlcNAcylation is precisely controlled and maintained in the “optimal zone”, and its abnormal changes is a potential factor in the pathogenesis of cancer, neurodegeneration, diabetes and diabetic complications. Although the essential role of O-GlcNAcylation in skeletal muscle physiology has been widely studied and recognized, it still is underestimated and overlooked. This review highlights the latest progress and potential mechanisms of O-GlcNAcylation in the regulation of skeletal muscle contraction and structural properties.
The body needs to generate heat to ensure basic life activities when exposed to cold temperatures. The liver, as the largest glycogen storage organ in the body and main heat-producing organ at rest, may play a role in chronic cold exposure. Recent studies suggested that pyroptosis plays a crucial role in liver diseases. However, the role of pyroptosis in cold stress-induced liver injury is not clear. Hence, in this study, we attempted to investigate the effects of chronic cold exposure on liver function, apoptosis, oxidative stress and inflammation in mice by establishing a mouse model of chronic cold exposure, and to investigate whether pyroptosis pathways are involved in the process of chronic cold exposure. In vivo, our results show that inflammatory cell infiltration and other pathological changes in liver cells and the activity of liver enzyme evidently increased in the serum and liver of cold-exposed mice, suggesting cold stress may result in liver injury. Remarkably, increased expression of heat shock protein 70 (HSP70) and HSP90 proteins proved the cold stress model is successfully constructed. Then, elevated levels of apoptosis, inflammation, oxidative stress and pyroptosis related proteins and mRNAs, such as cysteinyl aspartate specific proteinase-3 (Caspase-3), inducible nitric oxide synthase (iNOS), nuclear factor erythroid2-related factor 2 (Nrf2) and gasdermins D (GSDMD), confirmed that cold exposure activated apoptosis, oxidative stress and pyroptosis, and released inflammation cytokines. Meanwhile, in vitro, we got similar results as in vivo. Further, adding an NLR family pyrin domain containing 3 (NLRP3) inhibitors found that suppression expression of NLRP3 results in the essential proteins of pyroptosis and antioxidant evidently reduced, and adding GSDMD inhibitor found that suppression expression of GSDMD accompanies with the level of Nrf2 and heme oxygenase-1 (HO-1) obviously reduced. In summary, these findings provide a new understanding of the underlying mechanisms of the cold stress response, which can inform the development of new strategies to combat the effects of hypothermia.
Cold exposure is an unavoidable and severe challenge for people and animals residing in cold regions of the world, and may lead to hypothermia, drastic changes in systemic metabolism, and inhibition of protein synthesis. O‐linked‐N‐acetylglucoseaminylation (O‐GlcNAcylation) directly regulates the activity and function of target proteins involved in multiple biological processes by acting as a stress receptor and nutrient sensor. Therefore, our study aimed to examine whether O‐GlcNAcylation affected myogenic IL‐6 expression, regulation of energy metabolism, and promotion of survival in mouse skeletal muscle under acute cold exposure conditions. Total protein was extracted from C2C12 cells that had been cultured at 32°C for 3, 6, 9, and 12 h. Western blot analysis showed that mild hypothermia enhanced O‐GlcNAc transferase (OGT) and O‐GlcNAcase (OGA) expression. Furthermore, global OGT‐dependent glycosylation and interleukin‐6 (IL‐6) levels peaked 3 h after induction of mild hypothermia. Enhanced activation of the NF‐κB pathway was also observed in response to mild hypothermia. Alloxan and Thiamet G were used to reduce and increase global OGT glycosylation levels in C2C12 cells, respectively. Increased O‐GlcNAcylation was associated with significant upregulation of IL‐6 expression, as well as enhanced activity and nuclear translocation of p65, while decreased O‐GlcNAcylation had the opposite effect. In addition, increased O‐GlcNAcylation was associated with significantly increased glucose metabolism, and OGT‐mediated O‐GlcNAcylation of p65. We generated skeletal muscle‐specific OGT knockout mice and exposed them to cold at 4°C for 3 h per day for 1 week. OGT deficiency attenuated the O‐GlcNAcylation, activity, and nuclear translocation of p65, resulting in downregulation of IL‐6 in mouse skeletal muscle of mice exposed to cold conditions. Taken together, our data suggested that O‐GlcNAcylation of p65 enhanced p65 activity and nuclear translocation leading to the upregulation of IL‐6, which maintained energy homeostasis and promotes cell survival in mouse skeletal muscle during cold exposure.
Cold stress disturbs cellular metabolic and energy homeostasis, which is one of the causes of stress-induced illnesses. O-GlcNAcylation is a nutrient-sensing pathway involved in a myriad of cellular processes. It plays a key role in metabolic homeostasis. Nevertheless, a specific sensing mechanism linking skeletal muscle to O-GlcNAcylation in cold stress is unknown. In this study, O-GlcNAcylation of SIRT1 was targeted to explore the mechanism of skeletal muscle adaptation to cold stress. Ogt mKO aggravated skeletal muscle fibrosis induced by cold stress. At the same time, Ogt gene deletion accelerated the homeostasis imbalance and oxidative stress of skeletal muscle mitochondria induced by cold stress. In vitro results showed that inhibition of SIRT1’s O-GlcNAcylation accelerated mild hypothermia induced mitochondrial homeostasis in mouse myogenic cells (C2C12 cells). However, overexpression of SIRT1’s O-GlcNAcylation improved the above phenomena. Thus, these results reveal a protective role of OGT-SIRT1 in skeletal muscle’s adaptation to cold stress, and our findings will provide new avenues to combat stress-induced diseases.
Cold environment is an inevitable stress source for humans and livestock in cold areas, which easily induce a cold stress response and then cause a series of abnormal changes in energy metabolism, neuroendocrine system, behavior and emotion. Homeostasis is maintained by the unified regulation of the autonomic nervous system, endocrine system, metabolism and behavior under cold exposure. Behavior is an indispensable part of the functional regulation of the body to respond to environmental changes. At present, the behavioral changes caused by cold exposure are unclear or even chaotic due to the difficulty of defining cold stress. Therefore, this study aims to systematically observe the changes in spontaneous movement, exploratory behavior and anxiety of mice under different intensity cold exposure and summarize the characteristics and behavior traits combined with relevant blood physiological indexes under corresponding conditions. Mice models of cold stress with different intensities were established (cold exposure gradients were 22 ℃, 16 ℃, 10 ℃ and 4 ℃, and time gradients of each temperature were 2 h, 4 h, 6 h, 8 h, 10 h and 12 h). After the corresponding cold exposure treatment, mice immediately carried out the open field test(OFT) and elevated plus maze test (PMT) to evaluate their spontaneous movement, exploratory behavior and anxiety. Subsequently, blood samples were collected and used for the determination of corticosterone (Cort), corticotropin-releasing hormone (CRH), epinephrine (E), norepinephrine (NE), dopamine (DA) and 5-hydroxytryptamine (5-HT) by enzyme-linked immunosorbent assay (ELISA). Spontaneous movement of mice increased under 22 ℃ cold exposure, but their exploration behavior did not significantly change, and their anxiety improved at the initial stage. The spontaneous movement and anxiety of mice increased in the initial stage and decreased in the later stage under cold exposure at 16, 10 and 4 ℃ and the exploratory behavior was inhibited. The hypothalamic–pituitary–adrenal (HPA) axis and locus coeruleus-noradrenergic (LC/NE) system were activated by cold stress and fluctuated with different intensities of cold exposure. Meanwhile, serum DA increased, and 5-HT was the opposite under different intensities of cold exposure. In conclusion, mild acute cold exposure promoted the spontaneous movement, increased exploratory behavior and improved anxiety. As the intensity of cold exposure increases, cold exposure had a negative effect on spontaneous movement, exploratory behavior and emotion. The physiological basis of these behavioral and emotional changes in mice under different intensity cold stimulation is the fluctuation of Cort, CRH, E, NE, DA and 5-HT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.