We present a novel framework for hallucinating faces of unconstrained poses and with very low resolution (face size as small as 5pxIOD 1 ). In contrast to existing studies that mostly ignore or assume pre-aligned face spatial configuration (e.g. facial landmarks localization or dense correspondence field), we alternatingly optimize two complementary tasks, namely face hallucination and dense correspondence field estimation, in a unified framework. In addition, we propose a new gated deep bi-network that contains two functionality-specialized branches to recover different levels of texture details. Extensive experiments demonstrate that such formulation allows exceptional hallucination quality on in-the-wild low-res faces with significant pose and illumination variations.
We present a novel and effective approach for generating new clothing on a wearer through generative adversarial learning. Given an input image of a person and a sentence describing a different outfit, our model "redresses" the person as desired, while at the same time keeping the wearer and her/his pose unchanged. Generating new outfits with precise regions conforming to a language description while retaining wearer's body structure is a new challenging task. Existing generative adversarial networks are not ideal in ensuring global coherence of structure given both the input photograph and language description as conditions. We address this challenge by decomposing the complex generative process into two conditional stages. In the first stage, we generate a plausible semantic segmentation map that obeys the wearer's pose as a latent spatial arrangement. An effective spatial constraint is formulated to guide the generation of this semantic segmentation map. In the second stage, a generative model with a newly proposed compositional mapping layer is used to render the final image with precise regions and textures conditioned on this map. We extended the DeepFashion dataset [8] by collecting sentence descriptions for 79K images. We demonstrate the effectiveness of our approach through both quantitative and qualitative evaluations. A user study is also conducted. The codes and the data are available at
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.