Diesel generator sets are commonly used as power sources in transportation due to their versatility and cost-effectiveness. During the shutdown process, the diesel engine’s cylinder compression pressure would cause forced vibration in the driveline system through the crank linkage mechanism, resulting in unsteady loads that pose a threat to the bearing life. To address this issue, a coupling forward design method is proposed that takes into account the impact of unsteady loads on bearing life. An experiment was conducted on a 16V280 diesel generator set shutdown process, and a driveline dynamic model was established. The cumulative damage value that connects unsteady loads and bearing life was introduced to quantify the effect of unsteady loads on the bearing life during the shutdown process. The unsteady loads included torque fluctuation and collision forces. The results showed that reducing the driveline key gap and increasing the coupling stiffness can decrease the combined load on bearings and improve bearing life. A large stiffness coupling was designed to achieve shutdown smoothness and a 43.19% reduction in bearing life damage, confirming the design method’s feasibility concerning bearing life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.