The quality of peanut oil largely depends on the quantity of oleic (18:1) and linoleic acids (18:2). These two acids comprise more than 80% of the total fatty acids in peanuts. The oleate desaturase (FAD2) gene is important for maintaining high oleic acid content. A partial conservative sequence of the FAD2 gene from peanut was selected. The sense and antisense 260-bp fragments were amplified and subcloned into pFGC1008 binary expression vectors. A total of 21 transgenic plants were obtained via Agrobacterium-mediated transformation. The resulting down-regulation of the FAD2 gene resulted in a 70% increase in oleic acid content in the seeds of transformed plants compared with a 37.93% increase in untransformed plants. The results demonstrated that the target genes were likely suppressed by hpRNA interference, a pathway capable of achieving phenotypic changes. The silencing of FAD2 enabled the development of peanut oils having novel combinations of oleic acid content that can be used in high-value applications, making this approach a reliable technique for the genetic modification of seed quality and the potential for enhancement of other traits as well.
Plant mitochondrial and chloroplast genes that underwent horizontal transfer have been identified by parasite and grafting systems, respectively. Here, we directly observed 3 horizontal gene transfer (HGT) events in the 45 second axillary shoots of grafted cotton plants (Gossypium barbadense and Gossypium hirsutum) after extirpating the first axillary bud. The second axillary shoots showed phenotypic variations in cotton flowers and seeds that were evidence of spontaneous development from cells in the grafting site. As the progeny segregated and did not show stable inheritance across 3 generations, inheritance of traits in our study differed from the stable heredity of HGT plants in previous studies. In those studies, plants were artificially regenerated from the graft junctions, and inheritance involved only the movement of chloroplast DNA or genomic material between cells. Our findings may provide a feasible method to enhance plant breeding and the study of HGT.
Tissue and cell culture systems are vital to many areas of maize research and improvement. Efficient shoot regeneration remains a limiting factor for most elite lines. To enhance shoot regeneration, calluses derived from immature embryos of four genotypes were subjected to 6, 12, 24, 48, and 72 h of desiccation on sterile filter paper before shoot induction. We achieved up to 32% desiccation (measured as mass) and 48% imbibition (measured as mass gain in 48 h incubation) which was 3.4-fold higher than nondesiccated controls. This rapid desiccation/imbibition procedure enhanced shoot regeneration and development, but its efficiency was crucially dependent on the degree and duration of desiccation. All four genotypes calluses regenerated shoots best after 48 h of desiccation corresponding to a 23.7% average desiccation percentage, and regeneration frequencies reached 42-74%, which increased 1.5-2.1-fold compared with that of nondesiccated calluses. The effect of desiccation treatment on the shoot regeneration increase took place mainly during the early phase of induction. The weekly average shoot regeneration frequency of calluses with 48 h desiccation in the first wk reached 8.8% (the control was no regeneration); then it increased 3.0 and 2.3-fold in the second and third wk induction, respectively. We demonstrate that the moderate desiccation of calluses increases the yield of shoot regeneration and speeds up regeneration course in maize.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.