You-Gui Yin (YGY) is a traditional Chinese medicine (TCM) decoction composed of eight Chinese herbs. The interaction between TCM and Western medicine has attracted much attention nowadays. It is therefore necessary to study the clinical application of YGY in combination with Western medicine from the perspective of metabolic enzymes. This study aims to investigate the effect of YGY on the activities of seven CYP450 isozymes (CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4) in rats. Twenty-four Sprague-Dawley (SD) rats were randomly divided into four groups: high, middle, and low-dose YGY-treated groups and the control group. They were given 13.78, 20.67, and 31 g/kg/d YGY decoction by oral administration and normal saline (10 mL/kg), respectively, for 14 days. Half an hour after the last administration, a mixed probe substrate (1 mg/kg) was administered by tail vein injection. Then, blood was taken from the venous plexus at different time points. The protein expression level of the CYP450 enzymes in the control and treatment groups was determined by western blot. The effect of YGY on the activity of CYP isoenzymes was studied by comparing the plasma pharmacokinetics between the control and treatment groups. Compared with the control group, YGY at a high (31 g/kg) dosage could decrease AUC(0–t), AUC(0–∞) and Cmax of diclofenac, omeprazole, and midazolam by at least 35.4%, while increase CL by at least 88.9%; this revealed that YGY could induce CYP2C9, CYP2C19, and CYP3A4. The results show that when we use You-Gui Yin decoction in combination with other drugs, especially drugs metabolized by CYP2C9, CYP2C19, and CYP3A4 enzymes, the interaction between drugs needs special attention.
Background. Zuo-Gui Yin Decoction (ZGYD), a traditional Chinese prescription, is mainly used in various kinds of andrology and gynecology diseases. However, the study on the interaction of ZGYD and drugs has not been reported. Therefore, evaluating the interaction between ZGYD and metabolic enzymes is helpful to guide rational drug use. Objective. This study was conducted to explore the effects of ZGYD on the activity and mRNA expressions of six Cytochrome P450 (CYP450) enzymes in rats and to provide a basis for its rational clinical use. Methods. Sprague-Dawley rats were randomly divided into control, ZGYD high, medium, and low-dose group ( n = 6 ). The concentrations of six probe substrates in plasma of rats in each group were determined by UPLC-MS/MS. In addition, RT-PCR and Western blot were used to determine the effects of ZGYD on the expression of CYP450 isoforms in the liver. Results. Compared with the control group, the main pharmacokinetic parameters AUC(0-t), AUC (0~∞), of omeprazole, dextromethorphan, and midazolam in the high-dose group were significantly decreased, while the CL of these were significantly increased. The gene expressions of CYP2C11 and CYP3A1 were upregulated in the ZGYD medium, high-dose group. The protein expression of CYP2C11 was upregulated in the high-dose group, and the protein expression of CYP3A1 was upregulated in the medium, high-dose group. Conclusion. The results showed that ZGYD exhibited the induction effects on CYP2C11 and CYP3A1 (CYP2C19 and CYP3A4 in humans) in rats. However, no significant change in CYP1A2, CYP2B1, CYP2C7, and CYP2D2 activities was observed. It would be useful for the safe and effective usage of ZGYD in clinic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.