Supersonic combustion is an advanced technology for the next generation of aerospace vehicles. In the last two decades, numerical simulation has been widely used for the investigation on supersonic combustion. In this paper, the modeling and simulation of supersonic combustion on general platforms are thoroughly reviewed, with emphasis placed on turbulence modeling and turbulence–chemistry interactions treatment which are both essential for engineering computation of supersonic combustion. It is found that the Reynolds-averaged Navier–Stokes methods on the general platforms have provided useful experience for the numerical simulation in engineering design of supersonic combustion, while the large eddy simulation methods need to be widely utilized and further developed on these platforms. Meanwhile, the species transport models as a kind of reasonable combustion model accounting for the turbulence–chemistry interactions in supersonic combustion have achieved good results. With the development of new combustion models, especially those designed in recent years for high-speed combustion, the turbulence–chemistry interactions treatment for numerical simulation of supersonic combustion based on general platforms is expected to be further mature in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.