We studied the effects of tea catechins, (-)-epicatechin (EC), (-)-epigallocatechin (EGC), (-)-epicatechin gallate (ECG), and (-)-epigallocatechin gallate (EGCG) on the P-glycoprotein (P-gp) function in multidrug-resistant P-gp over-expressing KB-C2 cells. EC did not have any effects on cellular accumulation of P-gp substrates, rhodamine-123 and daunorubicin, but the other catechins increased the accumulation in the order of EGC < ECG < EGCG. The effects of EGCG were larger than those of verapamil and quercetin. Since these catechins inhibited the efflux of P-gp substrates, the elevation of substrate accumulation seemed to be induced by the inhibition of the efflux transporter. The results showed that the inhibitory effects of the catechins did not depend on their total hydrophobicity, but significantly depended on their chemical structure. The presence of the galloyl moiety on the C-ring markedly increased the n-octanol/PBS partition coefficients of the catechins and their activity on P-gp. On the other hand, the presence of the trihydric pyrogallol group as the B-ring decreased the partition coefficients but increased the activity on P-gp, compared with the action of the corresponding catechins with a dihydric catechol B-ring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.