We report that two classes of membrane nanotubes between human monocyte-derived macrophages can be distinguished by their cytoskeletal structure and their functional properties. Thin membrane nanotubes contained only F-actin, whereas thicker nanotubes, i.e., those > approximately 0.7 microm in diameter, contained both F-actin and microtubules. Bacteria could be trapped and surf along thin, but not thick, membrane nanotubes toward connected macrophage cell bodies. Once at the cell body, bacteria could then be phagocytosed. The movement of bacteria is aided by a constitutive flow of the nanotube surface because streptavidin-coated beads were similarly able to traffic along nanotubes between surface-biotinylated macrophages. Mitochondria and intracellular vesicles, including late endosomes and lysosomes, could be detected within thick, but not thin, membrane nanotubes. Analysis from kymographs demonstrated that vesicles moved in a stepwise, bidirectional manner at approximately 1 microm/s, consistent with their traffic being mediated by the microtubules found only in thick nanotubes. Vesicular traffic in thick nanotubes and surfing of beads along thin nanotubes were both stopped upon the addition of azide, demonstrating that both processes require ATP. However, microtubule destabilizing agents colchicine or nocodazole abrogated vesicular transport but not the flow of the nanotube surface, confirming that distinct cytoskeletal structures of nanotubes give rise to different functional properties. Thus, membrane nanotubes between macrophages are more complex than unvarying ubiquitous membrane tethers and facilitate several means for distal interactions between immune cells.
CD44 is a multistructural and multifunctional cell surface molecule involved in cell proliferation, cell differentiation, cell migration, angiogenesis, presentation of cytokines, chemokines, and growth factors to the corresponding receptors, and docking of proteases at the cell membrane, as well as in signaling for cell survival. All these biological properties are essential to the physiological activities of normal cells, but they are also associated with the pathologic activities of cancer cells. Experiments in animals have shown that targeting of CD44 by antibodies, antisense,and CD44-soluble proteins markedly reduces the malignant activities of various neoplasms, stressing the therapeutic potential of anti-CD44 agents. Furthermore, because alternative splicing and posttranslational modifications generate many different CD44 sequences, including, perhaps, tumor-specific sequences, the production of anti-CD44 tumor-specific agents may be a realistic therapeutic approach. However, in many cancers (renal cancer and non-Hodgkin's lymphomas are exceptions), a high level of CD44 expression is not always associated with an unfavorable outcome. On the contrary, in some neoplams CD44 upregulation is associated with a favorable outcome. Even worse, in many cases different research grows analyzing the same neoplastic disease reached contradictory conclusions regarding the correlation between CD44 expression and disease prognosis, possibly due to differences in methodology. These problems must be resolved before applying anti-CD44 therapy to human cancers.
We present evidence that nanotubular highways, or membrane nanotubes, facilitate a novel mechanism for intercellular communication in the immune system. Nanotubes were seen to connect multiple cells together and were readily formed between a variety of cell types, including human peripheral blood NK cells, macrophages, and EBV-transformed B cells. Nanotubes could be created upon disassembly of the immunological synapse, as cells move apart. Thus, nanotubular networks could be assembled from transient immunological synapses. Nanotubes were seen to contain GFP-tagged cell surface class I MHC protein expressed in one of the connected cells. Moreover, GPI-conjugated to GFP originating from one cell was transferred onto the surface of another at the connection with a nanotube. Thus, nanotubes can traffic cell surface proteins between immune cells over many tens of microns. Determining whether there are physiological functions for nanotubes is an intriguing new goal for cellular immunology.
IntroductionNatural killer (NK) cells are important effector cells of the innate immune response through their production of cytokines and lysis of transformed or infected cells without prior sensitization. NK cells exert killing by sensing "missing self" and/or by triggering of activating receptors upon interaction with specific ligands. 1 One of the best-characterized activating receptors is NKG2D, expressed on NK, NKT, and T cells, which recognizes stress-inducible class I major histocompatibility complex (MHC)-like proteins. 2 Other activating receptors, natural cytotoxicity receptors (NCRs), are expressed almost exclusively on NK cells. 3 Ligands for activating NK cell receptors are found on many cancer cell lines 4 and cells infected with bacteria 5 or viruses. [6][7][8] Immunoregulatory crosstalk between NK cells and dendritic cells (DCs) has emerged as important in both innate and adaptive immune responses. 9,10 However, the extent of crosstalk between human NK cells and macrophages has been less studied. Macrophages are also important effector cells of the innate immune response, exerting their function by using a range of receptors that recognize pathogen molecules such as bacterial lipopolysaccharide (LPS). 11 LPS is a powerful endotoxin that activates macrophages, although at high doses macrophages become refractory to further stimulation (ie, endotolerant). 12 Here, we set out to examine the potential for immunoregulatory crosstalk between human NK cells and macrophages or macrophages activated with LPS and probe the molecular basis for this.At the intercellular contact between immune cells, proteins are commonly seen to segregate into central and peripheral supramolecular activating clusters (c-and p-SMACs) at the immune synapse (IS). Functions of the NK cell IS could be to provide a framework for establishing checkpoints for cellular activation and/or directing secretion of lytic granules or cytokines in some circumstances. [13][14][15] Here we define, for the first time, 2 distinct NK cell-activating synapses. The macrophage-NK cell IS associated with priming, but not triggering, NK cytolysis and the IS between NK cells and macrophages treated with a high dose of LPS that triggers NK cytolysis. Materials and methods Generation of macrophages and DCsPeripheral blood mononuclear cells (PBMCs) were isolated by density gradient centrifugation (Ficoll-Paque Plus; Amersham Pharmacia Biotech, Piscataway, NJ). Serum was collected, heat inactivated for 30 minutes at 56°C, and filtered. PBMCs were incubated for 2 hours in plastic plates An Inside Blood analysis of this article appears at the front of this issue.The publication costs of this article were defrayed in part by page charge payment. Therefore, and solely to indicate this fact, this article is hereby marked ''advertisement'' in accordance with 18 USC section 1734. For personal use only. on March 31, 2019. by guest www.bloodjournal.org From previously coated overnight with 2% gelatin (Sigma-Aldrich, St Louis, MO). After 2 hours, the flask was was...
We report here that joint inflammation in collagen-induced arthritis is more aggravated in CD44-knockout mice than in WT mice, and we provide evidence for molecular redundancy as a causal factor. Furthermore, we show that under the inflammatory cascade, RHAMM (receptor for hyaluronan-mediated motility), a hyaluronan receptor distinct from CD44, compensates for the loss of CD44 in binding hyaluronic acid, supporting cell migration, up-regulating genes involved with inflammation (as assessed by microarrays containing 13,000 cDNA clones), and exacerbating collagen-induced arthritis. Interestingly, we further found that the compensation for loss of the CD44 gene does not occur because of enhanced expression of the redundant gene (RHAMM), but rather because the loss of CD44 allows increased accumulation of the hyaluronic acid substrate, with which both CD44 and RHAMM engage, thus enabling augmented signaling through RHAMM. This model enlightens several aspects of molecular redundancy, which is widely discussed in many scientific circles, but the processes are still ill defined
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.