We show here an efficient synthesis system of isoprenoids from acetoacetate as the main substrate. We expressed in Escherichia coli a Streptomyces mevalonate pathway gene cluster starting from HMG-CoA synthase and including isopentenyl diphosphate isomerase (idi) type 2 gene and the yeast idi type 1 and rat acetoacetate-CoA ligase (Aacl) genes. When the alpha-humulene synthase (ZSS1) gene of shampoo ginger was expressed in this transformant, the resultant E. coli produced 958 mug/mL culture of alpha-humulene with a lithium acetoacetate (LAA) supplement, which was a 13.6-fold increase compared with a control E. coli strain expressing only ZSS1. Next, we investigated if this E. coli strain engineered to utilize acetoacetate can synthesize carotenoids effectively. When the crtE, crtB, and crtI genes required for lycopene synthesis were expressed in the transformant, lycopene amounts reached 12.5 mg/g dry cell weight with addition of LAA, an 11.8-fold increase compared with a control expressing only the three crt genes. As for astaxanthin production with the E. coli transformant, in which the crtE, crtB, crtI, crtY, crtZ, and crtW genes were expressed, the total amount of carotenoids produced (astaxanthin, lycopene, and phytoene) was significantly increased to 7.5 times that of a control expressing only the six crt genes.
In this paper, we have identified a new sesquiterpene synthase gene (ZSS2) from Zingiber zerumbet Smith. Functional expression of ZSS2 in Escherichia coli and in vitro enzyme assay showed that the encoded enzyme catalyzed the formation of b-eudesmol and five additional by-products. Quantitative RT-PCR analysis revealed that ZSS2 transcript accumulation in rhizomes has strong seasonal variations. To further confirm the enzyme activity of ZSS2 and to assess the potential for metabolic engineering of b-eudesmol production, we introduced a gene cluster encoding six enzymes of the mevalonate pathway into E. coli and coexpressed it with ZSS2. When supplemented with mevalonate, the engineered E. coli produced a similar sesquiterpene profile to that produced in the in vitro enzyme assay, and the yield of b-eudesmol reached 100 mg/L.
ABSTRACTThe WalK (histidine kinase)/WalR (response regulator) two-component signal transduction system is a master regulatory system for cell wall metabolism and growth. This system is conserved in low G+C Gram-positive bacteria, includingBacillus subtilis,Staphylococcus aureus,Enterococcus faecalis, andStreptococcus mutans. In this study, we found the first antibiotic that functions as a WalK inhibitor (signermycin B) by screening 10,000Streptomycesextracts. The chemical structure (C23H35NO4; molecular weight, 389.5) comprises a tetramic acid moiety and a decalin ring. Signermycin B exhibited antimicrobial activity, with MIC values ranging from 3.13 μg/ml (8 μM) to 6.25 μg/ml (16 μM) against Gram-positive bacteria that possess the WalK/WalR two-component signal transduction system, including the drug-resistant bacteria methicillin-resistantStaphylococcus aureusand vancomycin-resistantEnterococcus faecalis. The half-maximal inhibitory concentrations of signermycin B against WalK in these organisms ranged from 37 to 61 μM. To determine the mechanism of action of signermycin B, surface plasmon resonance response analysis with the two WalK domains ofBacillus subtilisand competition assay with ATP were performed. The results showed that signermycin B binds to the dimerization domain but not the ATP-binding domain of WalK. In the presence of the cross-linker glutaraldehyde, signermycin B did not cause protein aggregation but interfered with the cross-linking of WalK dimers. These results suggest that signermycin B targets the conserved dimerization domain of WalK to inhibit autophosphorylation. InBacillus subtilisandStaphylococcus aureus, signermycin B preferentially controlled the WalR regulon, thereby inhibiting cell division. These phenotypes are consistent with those of cells starved for the WalK/WalR system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.