This paper presents fabrication and testing of a multiple-evaporator and multiple-condenser loop heat pipe (MLHP) with polytetrafluoroethylene (PTFE) porous media as wicks. The MLHP has two evaporators and two condensers in a loop heat pipe in order to adapt to various changes of thermal condition in spacecraft. The PTFE porous media was used as the primary wicks to reduce heat leak from evaporators to compensation chambers. The tests were conducted under an atmospheric condition. In the tests that heat loads are applied to both evaporators, the MLHP was stably operated as with a LHP with a single evaporator and a single condenser. The relation between the sink temperature and the thermal resistance was experimentally evaluated. In the test with the heat load to one evaporator, the heat transfer from the heated evaporator to the unheated evaporator was confirmed. In the heat load switching test, in which the heat load is switched from one evaporator to another evaporator repeatedly, the MLHP could be stably operated. The loop operation with the large temperature difference between the heat sinks was also tested. From this result, the stable operation of the MLHP in the various conditions was demonstrated. It was also found that a flow regulator which prevents the uncondensed vapor from the condensers is required at the inlet of the common liquid line when one condenser has higher temperature and cannot condense the vapor in it.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.