Effective ecosystem conservation and resource management require quantitative monitoring of biodiversity, including accurate descriptions of species composition and temporal variations of species abundance. Therefore, quantitative monitoring of biodiversity has been performed for many ecosystems, but it is often time-and effort-consuming and costly. Recent studies have shown that environmental DNA (eDNA), which is released to the environment from macro-organisms living in a habitat, contains information about species identity and abundance. Thus, analyzing eDNA would be a promising approach for more efficient biodiversity monitoring. In the present study, we added internal standard DNAs (i.e., known amounts of short DNA fragments from fish species that have never been observed in a sampling area) to eDNA samples, which were collected weekly from a coastal marine ecosystem in Maizuru-Bay, Kyoto, Japan (from April 2015 to March 2016), and performed metabarcoding analysis using Illumina MiSeq to simultaneously identify fish species and quantify fish eDNA copy numbers. A correction equation was obtained for each sample using the relationship between the number of sequence reads and the added amount of the standard DNAs, and this equation was used to estimate the copy numbers from the sequence reads of non-standard fish eDNA. The calculated copy numbers showed significant positive correlation with those determined by quantitative PCR, suggesting that eDNA metabarcoding with standard DNA enabled useful quantification of eDNA. Furthermore, for samples that show a high level of PCR inhibition, our method might allow more accurate quantification than qPCR because the correction equations generated using internal standard DNAs would include the effect of PCR inhibition. A single run of Illumina MiSeq produced > 70 quantitative fish eDNA time series in our study, showing that our method could contribute to more efficient and quantitative monitoring of biodiversity.
Environmental DNA (eDNA) is DNA shed by organisms into surrounding environments such as soil and water. The new methods using eDNA as a marker for species detection are being rapidly developed. Here we explore basic knowledge regarding the dependence of the eDNA degradation rate on time and water temperature, and the relationship between eDNA degradation and bacterial abundance. This subject has not been well clarified, even though it is essential for improving the reliability of eDNA analysis. To determine the time- and water temperature-dependent degradation of eDNA, river water was sampled and eDNA concentrations were determined for ayu sweetfish (Plecoglossus altivelis altivelis) and common carp (Cyprinus carpio) at seven time points, over a 48-h period, and at three different water temperatures. The degradation of eDNA was modeled for each species using an existing exponential decay model with an extension to include water temperature effects. The degradation models were constructed for ayu sweetfish as Nt = 229,901.2 × exp [− (0.01062 × k − 0.07081) × t] and for common carp as Nt = 2,558.0 × exp [− (0.01075 × k − 0.07372) × t]. Nt is the DNA concentration at time t (elapsed time in hours) and k is the water temperature (°C). We also measured the concentration of eDNA derived from purified genomic DNA of the common carp, which was spiked into aquarium water without the target species, and we measured the bacterial abundance in the sample water after 12 and 24 h of incubation. Environmental DNA degradation was accelerated at higher water temperatures (generalized linear model, GLM; p < 0.001), but bacterial abundance did not have a significant effect on eDNA degradation (GLM, p = 0.097). These results suggest that the proper treatment of this temperature effect in data interpretations and adjustments would increase the reliability of eDNA analysis in future studies.
Environmental DNA (eDNA) analysis is a powerful tool within ecology for the study of the distribution or abundance of aquatic species, although the simplification of water sampling is required for enabling light and fast field sampling to expand further application of eDNA analysis. Here, certain candidate chemicals belonging to the group of cationic surfactants were examined for their effectiveness as preservatives for eDNA water samples by simply adding the chemicals to water samples to suppress the degradation of eDNA. The quaternary ammonium compound benzalkonium chloride (BAC) at a final concentration of 0.01% was effective to retain 92% of eDNA derived from the bluegill sunfish Lepomis macrochirus in an 8-h incubation test at ambient temperature, which assumed a transportation of water samples in 1-day field sampling during the daytime. Meanwhile, eDNA in water samples without BAC retained only 14% of the initial eDNA. Moreover, an additional long-term incubation test (up to 10 days) revealed BACtreated samples retained *70 and 50% of bluegill DNA compared to the initial amount after 1-and 10-day incubation at ambient temperature, respectively. Meanwhile, eDNA in naïve samples reduced to 20% after 1-day incubation and reached undetectable levels after 10 days. Up to now, many eDNA studies have adopted on-site filtration followed by filter fixation, which requires many pieces of equipment. Addition of BAC can protect eDNA in water samples with less effort and equipment resulting in an increase of measurement accuracy of the eDNA quantity and detection probability of rare species by preventing the disappearance of rare sequences in water samples.
Background Kimura’s disease (KD) is known to be dominant among young Asian men, but it can also occur in middle- and advanced-aged people. The clinical characteristics of KD, especially by age, are not well known. Aim This study was performed to investigate the effects of age on the clinical characteristics of KD. Design We conducted a case series study. Methods All case studies of patients diagnosed with KD were collected via a PubMed search of studies published until August 2018. The data were analyzed by age group. Results In total, 215 studies were reviewed (238 patients; mean age of 36 years). The male:female ratio was 4:1 overall, 17:1 in patients aged <20 years, 4:1 in patients aged 20–39 years and 2:1 in patients aged ≥40 years (P = 0.01). The percentage of patients with pruritus was 15.4% overall, 3.8% in patients aged <20 years, 15.5% in patients aged 20–39 years and 21.7% in patients aged ≥40 years (P = 0.02). The time to diagnosis was 5.3 years overall, 3.2 years in patients aged <20 years, 4.7 years in patients aged 20–39 years and 7.1 years in patients aged ≥40 years (P < 0.01). Conclusions The proportion of female patients affected the incidence of pruritus, and the time to diagnosis increased as the patients’ age increased. There were no significant age-related differences in region/race, complications, multiplicity, laterality, anatomical distribution, maximum size, eosinophil count, immunoglobulin E level, initial treatment, recurrence or outcomes. This may be useful information for the diagnosis of KD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.