Phase reduction framework for limit-cycling systems based on isochrons has been used as a powerful tool for analyzing the rhythmic phenomena. Recently, the notion of isostables, which complements the isochrons by characterizing amplitudes of the system state, i.e., deviations from the limit-cycle attractor, has been introduced to describe the transient dynamics around the limit cycle [Wilson and Moehlis, Phys. Rev. E 94, 052213 (2016)]. In this study, we introduce a framework for a reduced phase-amplitude description of transient dynamics of stable limit-cycling systems. In contrast to the preceding study, the isostables are treated in a fully consistent way with the Koopman operator analysis, which enables us to avoid discontinuities of the isostables and to apply the framework to system states far from the limit cycle. We also propose a new, convenient bi-orthogonalization method to obtain the response functions of the amplitudes, which can be interpreted as an extension of the adjoint covariant Lyapunov vector to transient dynamics in limit-cycling systems. We illustrate the utility of the proposed reduction framework by estimating the optimal injection timing of external input that efficiently suppresses deviations of the system state from the limit cycle in a model of a biochemical oscillator.
The phase reduction method for limit-cycle oscillators subjected to weak perturbations has significantly contributed to theoretical investigations of rhythmic phenomena. We here propose a generalized phase reduction method that is also applicable to strongly perturbed limit-cycle oscillators. The fundamental assumption of our method is that the perturbations can be decomposed into a large-amplitude component varying slowly as compared to the amplitude relaxation time and remaining weak fluctuations. Under this assumption, we introduce a generalized phase parameterized by the slowly varying large-amplitude component and derive a closed equation for the generalized phase describing the oscillator dynamics. The proposed method enables us to explore a broader class of rhythmic phenomena, in which the shape and frequency of the oscillation may vary largely because of the perturbations. We illustrate our method by analyzing the synchronization dynamics of limit-cycle oscillators driven by strong periodic signals. It is shown that the proposed method accurately predicts the synchronization properties of the oscillators, while the conventional method does not.
Hybrid dynamical systems characterized by discrete switching of smooth dynamics have been used to model various rhythmic phenomena. However, the phase reduction theory, a fundamental framework for analyzing the synchronization of limit-cycle oscillations in rhythmic systems, has mostly been restricted to smooth dynamical systems. Here we develop a general phase reduction theory for weakly perturbed limit cycles in hybrid dynamical systems that facilitates analysis, control, and optimization of nonlinear oscillators whose smooth models are unavailable or intractable.On the basis of the generalized theory, we analyze injection locking of hybrid limit-cycle oscillators by periodic forcing and reveal their characteristic synchronization properties, such as ultrafast and robust entrainment to the periodic forcing and logarithmic scaling at the synchronization transition. We also illustrate the theory by analyzing the synchronization dynamics of a simple physical model of biped locomotion.
We consider optimization of linear stability of synchronized states between a pair of weakly coupled limit-cycle oscillators with cross coupling, where different components of state variables of the oscillators are allowed to interact. On the basis of the phase reduction theory, the coupling matrix between different components of the oscillator states that maximizes the linear stability of the synchronized state under given constraints on overall coupling intensity and on stationary phase difference is derived. The improvement in the linear stability is illustrated by using several types of limit-cycle oscillators as examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.